Investigation of probability distribution laws of structural properties of nanoparticles simulated by molecular dynamics method

Authors

  • Alexander Vasil'evich Vakhrushev Institute of Applied Mechanics UB RAS
  • Alexey Yur'evich Fedotov Institute of Applied Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2009.2.2.9

Keywords:

nanoparticles, nanocomposites, molecular dynamic, probability, distribution, properties of nanoparticles

Abstract

A mathematical model of condensation of composite nanoparticles in a gas phase is presented. A series of computational experiments are carried out to simulate the formation of nanoparticles. Statistical data on the dimensional, structural and quantitative properties of metal nanoparticles are obtained. The estimating characteristics of sampled data are calculated. Statistical hypotheses concerning the probability distribution laws of the properties of nanoparticles are verified using the Pearson criterion. Histograms showing the distribution of the number of nanoparticles per unit volume, their average diameter and density, and the fraction of total mass of silver in nanoparticles are constructed.

Downloads

Download data is not yet available.

References

Leksovskij A.M., Udin V.E. Vazkouprugost’ polimernoj matricy i razrusenie teplostojkih voloknistyh kompozitov // Fizika tverdogo tela. - 2005. - T. 47, No 5. - S. 944-950.
Popov V.A., Gulbin V.N., Kotov Y.A., Donald R. Lesuer, Jose San Juan, Smirnov O.M., Beketov I.V., Ivanov V.V. New methods of producing metal matrix composites including application of nano-materials and explosive treatment // ICCE-8 (Tenerife, August 5-11). - 2001. - P. 749-750.
Lutz M.P., Zimmerman R.W. Effect of the interphase zone on the bulk modulus of a particulate composite // Trans ASME. J. Appl. Mech. - 1996. - V. 63 - P. 855-861. DOI
Kompis V., Kompis M., Kaukic M., Hui D. Singular Trefftz functions for modelling material reinforced by hard particles. // Proceedings of the Fifth International Conference on Engineering Computational Technology / Topping BHV, Montero G, Montenegro (eds), CD-ROM Paper 184, Civil-Comp Press, Stirlingshire. - 2006.
Suzdalev I.P. Nanotehnologia: fiziko-himia nanoklasterov, nanostruktur i nanomaterialov. - M.: Izd-vo KomKniga, 2006. - 592s.
Vakhrouchev A.V. Simulation of nano-elements interactions and self-assembling // Modeling and simulation in materials science and engineering. - 2006. - No 14. - P. 975-991. DOI
Vakhrouchev A.V. Computer simulation of nanoparticles formation, moving, interaction and self-organization // Journal of Physics: Conference Series. - 2007. - V. 61. - P.26-30. DOI
Vakhrouchev A.V. Modelling of the process of formation and use of powder nanocomposites // Composites with Micro and Nano-Structures. Computational Modeling and Experiments. Computational Methods in Applied Sciences Series. - Barcelona, Spain: Springer Science. - V. 9.- 2008. - P.107-136.
Vahrusev A.V. , Lipanov A.M. Cislennyj Analiz atomnoj struktury i formy metalliceskih nanocastic // Vycislitel’naa matematika i tehniceskaa fizika. - 2007, - T. 47, - No 10. - S. 1774-1783.
Alfimov M.V., Kadusnikov R.M., Sturkin N.A. i dr. Imitacionnoe modelirovanie processov samoorganizacii nanocastic // Rossijskie nanotehnologii. - 2006. - T. 1, No 1-2. - S. 127-133.
Vahrusev A.V., Lipanov A.M. Rascet potenciala parnogo vzaimodejstvia nanocastic // Himiceskaa fizika i mezoskopia. - 2005. - T. 7, No 1. - S. 53-62.
Krivtsov A.M., Wiercigroch M. molecular dynamic simulation of mechanical properties for polycrystal materials // Materials Physics and Mechanics. - 2001. - V. 3(1). - P. 45-51.
Vahrusev A.V., Fedotov A.U. Veroatnostnyj analiz Modelirovania raspredelenia strukturnyh harakteristik sformirovannyh v gazovoj faze kompozicionnyh nanocastic // Vycislitel’naa mehanika splosnyh sred. - 2008. - T. 1, No 3. - S. 34-45.
Rit M. Nanokonstruirovanie v nauke i tehnike. Vvedenie v mir nanorasceta. - Moskva-Izevsk: Izd-vo NIC <>, 2005. - 160s.
Heerman D.V. Metody komp’uternogo eksperimenta v teoreticeskoj fizike. - M.: Nauka, 1990. - 176s.
Verlet L. Computer <> on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules // Phys. Rev. - 1967. - V. 159, N. 1. - P. 98-103. DOI
Kendall M., St’uart A. Statisticeskie vyvody i svazi. - M.: Nauka, 1973. - 899s.
Sturgess H.A. The choice of classic intervals // J. American Statist. Ass. - 1926. - March. - P. 47.
Tutubalin V.N. Teoria veroatnostej i slucajnyh processov. Osnovy matematiceskogo apparata i prikladnye aspekty. - M.: Izd-vo MGU, 1992. - 400c.
Vahrusev A.V., Fedotov A.U. Issledovanie processov formirovania kompozicionnyh nanocastic iz gazovoj fazy metodom matematiceskogo modelirovania // Himiceskaa fizika i mezoskopia. - 2007. - T. 9, No 4. - S. 333-347.
Vahrusev A.V., Fedotov A.U. Modelirovanie formirovania kompozicionnyh nanocastic iz gazovoj fazy // Al’ternativnaa energetika i ekologia. - 2007. - No 10. - S. 22-26.
Stauffer D. Annual Reviews of Computational Physics. - World Scientific, 2001. - 332 p.

Published

2009-07-01

Issue

Section

Articles

How to Cite

Vakhrushev, A. V., & Fedotov, A. Y. (2009). Investigation of probability distribution laws of structural properties of nanoparticles simulated by molecular dynamics method. Computational Continuum Mechanics, 2(2), 14-21. https://doi.org/10.7242/1999-6691/2009.2.2.9