Flow of plastic material between rotating plates: distinguishing features of the solution
DOI:
https://doi.org/10.7242/1999-6691/2009.2.2.8Keywords:
singularity, friction, analytic solution, rigid perfectly / plastic materialAbstract
The flow of rigid perfectly/plastic material between two rotating plates with rough surfaces is considered. An analytic solution to the boundary value problem formulated in this study is obtained by an inverse method under standard assumptions for this class of problems. The main purpose of the present research is to investigate the qualitative behavior of solutions in the vicinity of the line of intersection of two friction surfaces. A comparison between the new solution and other known solutions of boundary value problems, whose formulations also include two intersecting friction surfaces, is made.
Downloads
References
Sokolovskij V.V. Ob uravneniah plasticeskogo tecenia v pogranicnom sloe // PMM. - 1956. - T. 20, vyp. 3. - S. 328-334.
Alexandrov S., Richmond O. Singular plastic flow fields near surfaces of maximum friction stress // Int. J. Non-Linear Mech. - 2001. - V. 36, N. 1. - P. 1-11. DOI
Collins I.F., Meguid S.A. On the influence of hardening and anisotropy on the plane-strain compression of thin metal strip // Trans. ASME. J. Appl. Mech. - 1977. - V. 44, N. 2. - P. 271-278. DOI
Aleksandrov S.E., Lamina E.A. Singularnye resenia pri ploskom plasticeskom tecenii materialov, cuvstvitel’nyh k srednemu naprazeniu // Dokl. RAN. - 2002. - T. 383, No 4. - S. 492-495.
Aleksandrov S.E. Singularnye resenia v osesimmetricnyh teceniah sredy, podcinausejsa modeli dvojnogo sdviga // PMTF. - 2005. - T. 46, No 5. - S. 180-186.
Alexandrov S., Harris D. Comparison of solution behaviour for three models of pressure-dependent plasticity: a simple analytical example // Int. J. Mech. Sci. - 2006. - V. 48, N. 7. - P. 750-762. DOI
Alexandrov S., Mishuris G. Viscoplasticity with a saturation stress: distinguished features of the model // Arch. Appl. Mech. - 2007. - V. 77, N. 1. - P. 35-47. DOI
Aleksandrov S.E., Pirumov A.R., Cesnikova O.V. Osobennosti plasticeskogo tecenia poristyh materialov v zone frikcionnogo kontakta // Porosk. metallurg. - 2008. - No 9/10. - S. 13-20.
Aleksandrov S.E., Baranova I.D., Misuris G. Szatie vazkoplasticeskogo sloa mezdu serohovatymi parallel’nymi plitami // Izv. RAN. MTT. - 2008. - No 6. - S. 33-39.
Aleksandrov S.E., Gol’dstejn R.V., Lamina E.A. Razvitie koncepcii koefficienta intensivnosti skorosti deformacii v teorii plasticnosti // Dokl. RAN. - 2003. - T. 389, No 6. - S. 180-183.
Aleksandrov S.E., Lamina E.A. Nelokal’nyj kriterij razrusenia vblizi poverhnostej trenia i ego prilozenie k analizu processa vytazki i vydavlivania // Probl. masinostr. nadezn. masin. - 2007. - No 3. - S. 62-68.
Lyamina E., Alexandrov S., Grabco D., Shikimaka O. An approach to prediction of evolution of material properties in the vicinity of frictional interfaces in metal forming // Key Engng. Mater. - 2007. - V. 345-346. - P. 741-744. DOI
Dutton R.E., Goetz R.L., Shamasundar S., Semiatin S.L. The ring test for P/M materials // Trans. ASME J. Manuf. Sci. Engng. - 1998. - V. 120, N. 4. - P. 764-769. DOI
Aukrust T., LaZghab S. Thin shear boundary layers in flow of hot aluminium // Int. J. Plast. - 2000. - V. 16, N. 1. - P. 59-71. DOI
Appleby E.J., Lu C.Y., Rao R.S., Devenpeck M.L., Wright P.K., Richmond O. Strip drawing: a theoretical-experimental comparison // Int. J. Mech. Sci. - 1984. - V. 26, N. 5. - P. 351-362. DOI
Hill R. Matematiceskaa teoria plasticnosti. - M: Gostehizdat, 1956. - 407s.
Zadoan M.A. Prostranstvennye zadaci teorii plasticnosti. - M: Nauka, 1992. - 382s.
Spencer A.J.M. A theory of the failure of ductile materials reinforced by elastic fibres // Int. J. Mech. Sci. - 1965. - V. 7. - P. 197-209. DOI
Aleksandrov S.E., Lamina E.A. Szatie plasticeskogo materiala, cuvstvitel’nogo k srednemu naprazeniu, vrasausimisa plitami // Izv. RAN. MTT. - 2003. - No 6. - S. 50-60.
Adams M.J., Briscoe B.J., Corfield G.M., Lawrence C.J., Papathanasiou T.D. An analysis of the plane-strain compression of viscoplastic materials // Trans. ASME. J. Appl. Mech. - 1997. - V. 64. - P. 420-424. DOI
Alexandrov S., Alexandrova N. On the maximum friction law in viscoplasticity // Mech. Time-Depend. Mater. - 2000. - V. 4, N. 1. - P. 99-104. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2009 Computational Continuum Mechanics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.