Finite element analysis of large deformations of hyperelastic solids in principal axes
DOI:
https://doi.org/10.7242/1999-6691/2009.2.1.2Keywords:
finite strains, material and spatial strain tensors, objective rates, conjugate stress tensors, constitutive equations, finite element methodAbstract
The computing technology of analysis of hyperelastic solids in the finite strain regime is offered. As a working basis, the principal axes of the left stretch tensor are chosen. All relations necessary for finite-element formulation of the problem and its solution are constructed in terms of the principal stretches. Numerical examples are presented.
Downloads
References
Lur’e A.I. Nelinejnaa teoria uprugosti. - M.: Nauka, 1980. - 512s.
Cernyh K.F. Nelinejnaa teoria uprugosti v masinostroitel’nyh rascetah. - L.: Masinostroenie, 1986. - 336 s.
Eliseev V.V. Mehanika uprugih tel. - SPb.: Izd-vo SPbGTU, 1999. - 341s.
Korobejnikov S.N. Nelinejnoe deformirovanie tverdyh tel. - Novosibirsk: Izd-vo SO RAN, 2000. - 262s.
Golovanov A.I., Sultanov L.U. Teoreticeskie osnovy vycislitel’noj nelinejnoj mehaniki deformiruemyh sred. - Kazan’: Izd-vo KGU, 2008. - 165s.
Meyers A., Schiebe P., Bruhns O.T. Some comments on objective rates of symmetric Eulerian tensors with application to Eulerian strain rates. // Acta Mech. - 2000. - V. 139. - P. 91-103. DOI
Xiao H., Bruhns O.T., Meyers A. Logarithmic strain, logarithmic spin and logarithmic rate. // Acta Mech. - 1997. - V. 124. - P. 89-105. DOI
Xiao H., Bruhns O.T., Meyers A. On objective corotational rates and their defining spin tensors. // Int. J. Solids Struct. - 1998. - V. 35. - P. 4001-4014. DOI
Xiao H., Bruhns O.T., Meyers A. Strain rates and material spins. // J. Elasticity. - 1998. - V. 52. - P. 1-41. DOI
Xiao H., Bruhns O.T., Meyers A. A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity. // J. Elasticity. - 1999. - V. 56. - P. 59-93. DOI
Asghari M., Naghdabadi R., Sohrabpour S. Stresses conjugate to the Jaumann rate of Eulerian strain measures. // Acta. Mech. - 2007. - V. 190. - P. 45-56. DOI
Asghari M., Naghdabadi R. On the objective corotational rates of Eulerian strain measures. // J. Elasticity. - 2008. - V. 90. - P. 175-207. DOI
Lin R.C. Numerical study of consistency of rate constitutive equations with elasticity at finite deformation. // Int. J. Numer. Meth. Eng. - 2002. - V. 55. - P. 1053-1077. DOI
Dui G.-S., Ren Q.-W., Shen Z. Time rates of Hill’s strain tensors. // J. Elasticity. - 1999. - V. 54. - P. 129-140. DOI
Dui G.-S., Ren Q.-W., Shen Z. Conjugate stress to Seth’s strain class. // Mech. Res. Commun. - 2000. - V. 27. - P. 539-542. DOI
Dui G.-S. Some based-free formulae for the time rate and conjugate stress of logarithmic strain tensor. // J. Elasticity. - 2006. - V. 83. - P. 113-151. DOI
Fitzgerald J.E. A tensorial Henky measure of strain and strain rate for finite deformations. // J. Appl. Phys. - 1980. - V. 51. - P. 5111-5115. DOI
Nicholson D.W. On stresses conjugate to Eulerian strains. // Acta Mech. - 2003. - V. 165. - P. 87-98. DOI
Farahani K., Naghdabadi R. Basic free relations for the conjugate stress of the strains based on the right stretch tensor. // Int. J. Solids Struct. - 2003. - V. 40. - P. 5887-5900. DOI
Farahani K., Bahai H. Hyper-elastic constitutive equations of conjugate stresses and strain tensors for the Seth-Hill strain measures. // Int. J. Eng. Science. - 2004. - V. 42. - P. 29-41. DOI
Korobeynikov S.N. Objective tensor rates and applications in formulation of hyperelastic relations. // J. Elasticity. - 2008. - V. 93. - P. 105-140. DOI
Dmitrienko Y.I. Novel viscoelastic models for elastomers under finites strains // Europ. J. Mech. A / Solids. - 2002. - V. 21. - P. 133-150. DOI
Lehmann T., Guo Z.-H., Liang H. The conjugacy between Cauchy stress and logarithm of left stretch tensor. // Europ. J. Mech. A / Solids. - 1991. - V. 10. - P. 395-404.
Simo J.C., Taylor R.L. Quasi-incompressible finite elasticity in principal stretches. Continuum based and numerical algorithms. // Comput. Meth. Appl. Mech. Eng. - 1991. - V. 85. - P. 273-310. DOI
Xiao H., Chen L.-S. Hencky’s logarithmic strain and dual stress-strain and strain-stress relations in isotropic finite hyperelasticity. // Int. J. Solids Struct. - 2003. - V. 40. - P. 1455-1463. DOI
Kornev S.A. Termodinamiceski soglasovannye uravnenia sostoania nelinejnoj teorii uprugosti. // Izv. RAN. MTT. - 2003. - No 2. - S. 71-82.
Mal’kov V.M. Nelinejnyj zakon uprugosti dla tenzora uslovnyh naprazenij i gradienta deformacii. // Izv. RAN. MTT. - 1998. - No 1. - S. 91-98.
Bernstein B., Rajagopal K. Thermodynamics of hypoelasticity. // Z. Angew. Math. Phys. - 2008. - V. 59. - P. 537-553. DOI
Criscone J.C., Humphrey J.D., Douglas A.S., Hunter W.C. An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. // J. Mech. Phys. Solids. - 2000. - V. 48. - P. 2445-2465. DOI
Sharda S.C., Tschoegl N.W. A strain energy density functions for compressible rubber-like materials. // Trans. Soc. Rheol. - 1976. - V. 20. - P. 361-372. DOI
Cernysov A.D. Prostye opredelausie uravnenia dla uprugoj sredy pri konecnyh deformaciah // Izv. RAN. MTT. - 1993. - No 1. - S. 75-81.
Kuznecova V.G., Rogovoj A.A. Effekt uceta slaboj szimaemosti materiala v uprugih zadacah s konecnymi deformaciami // Izv. RAN. MTT. - 1999. - No 4. - S. 64-76.
Rogovoy A. Effect of elastomer slight compressibility. // Europ. J. Mech. A/Solids. - 2001. - V.20. - P. 757-775. DOI
Murphy J.G., Rogerson G.A. A method to model simple tension experiment using finite elasticity theory with an application to some polyurethane foams. // Int. J. Eng. Scien. - 2002. - V. 40. - P. 499-510. DOI
Hartmann S., Neff P. Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. // Int. J. Solids Struct. - 2003. - V. 40. - P. 2767-2791. DOI
Attard M.M., Hunt G.W. Hyperelastic constitutive modeling under finite strain. // Int. J. Solids Struct. - 2004. - V. 41. - P. 5327-5350. DOI
Beda T. Modeling hyperelastic behavior of rubber: A novel invariant-based and a review of constitutive models. // J. Polym. Scien.:Part B: Polym. Phys. - 2007. - V.45. - P. 1713-1732. DOI
Guo Z., Sluys L.J. Constitutive modeling of hyperelastic rubber-like materials. // HERON- 2008. - V. 53. - P. 109-132.
Sasso M., Palmieri G., Ghiappini G., Amodio D. Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. // Polym. Testing. - 2008. - V. 27. - P. 995-1004. DOI
Golovanov A.I., Bereznoj D.V. Metod konecnyh elementov v mehanike deformiruemyh tverdyh tel. - Kazan’: Izd-vo <>, 2001. - 301s.
Nactegaal J. C., Rebelo N. On the development of a general purpose finite element program for analysis of forming processes // Int. J. Numer. Meth. Eng. - 1988. - V. 25. - P. 113-131. DOI
Taylor L.M., Becher E.B. Some computational aspect of large deformation, rate-dependent plasticity problems // Comput. Meth. Appl. Mech. Eng. - 1983. - V. 41. - P. 251-277. DOI
Yamada Y. Nonlinear matrices, their implication and applications in inelastic large deformation analysis // Comput. Meth. Appl. Mech. Eng. - 1982. - V. 33. - P. 417-437. DOI
Vasidzu K. Variacionnye metody v teorii uprugosti i plasticnosti. - M.: Mir, 1987. - 542 s.
Kanok-Nukulchai W., Wong W.K. Element-based Lagrangian formulation for large-deformation analysis. // Comput. Struct. - 1988. - V. 30. - P. 967-974. DOI
Kojic M., Bathe K.J. Studies of finite element procedures - stress solution at a closed elastic strain path with stretching and shearing using updated Lagrangian Jaumann formulation. // Comput. Struct. - 1987. - V. 26. - P. 175-179. DOI
Peterson A., Peterson H. On finite element analysis of geometrically nonlinear problems. // Comput. Meth. Appl. Mech. Eng. - 1985. - V. 51. - P. 277-286. DOI
Downloads
Published
Issue
Section
License
Copyright (c) 2009 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.