Identification of the coefficients in a non-stationary heat conductivity equation
DOI:
https://doi.org/10.7242/1999-6691/2008.1.4.41Keywords:
Abstract
Method and numerical algorithm for identification of thermophysical properties of inhomogeneous material are proposed. In the context of the proposed approach, the space distribution of internal parameters (heat conduction, heat capacity) is defined from heat flux measurements at the domain boundary. The efficiency of the method and algorithm is illustrated by solving the test problem.
Downloads
References
Kravcuk A.S. Osnovy komp’uternoj tomografii. - M.: Drofa, 2001. - 340s.
Kravcuk A.S. Osnovy komp’uternoj tomografii. - M.: Drofa, 2001. - 340s.
Tihonov A.N., Arsenii V.A.Metody resenia nekorrektnyh zadac. - M.: Nauka, 1979. - 285s.
Tihonov A.N., Arsenii V.A., Timonov A.A. Matematiceskie zadaci komp’uternoj tomografii. - M.: Nauka, 1987. - 158s.
Denisov A.M. Vvedenie v teoriu obratnyh zadac. - M.: MGU, 1994. - 206s.
Lavrent’ev M.M. Nekorrektnye zadaci matematiceskoj fiziki i analiza. - M.: Nauka. - 286s.
Fizika vizualizacii izobrazenij v medicine / Pod red. S.Uebba. - M.:Mir, 1991. - T. 1 - 407s; T. 2 - 406s.
Nolet G., Cepmen L. i dr. Sejsmiceskaa tomografia s prilozeniami v global’noj sejsmologii i razvedocnoj geofizike. - M.: Mir, 1990. - 450s.
Vatul’an A.O. Obratnye zadaci v mehanike deformiruemogo tverdogo tela. - M.: Fizmatlit, 2007. - 222s.
Stepanov V.V. Kurs differencial’nyh uravnenij. - M.: Fizmatgiz, 1958. - 468s.
Samarskij A.A. Teoria raznostnyh shem. - M.:Nauka, 1977. - 656s.
Gel’fand I.M., Gindikin S.G., Graev M.I. Izbrannye zadaci integral’noj geometrii. - M.: Dobrosvet, 2000. - 208s.
Nakamura Sh. Analisis numerico y visualizacion grafica con MATLAB. - Madrid: Pearson Education, 1997. - 476 p.
Downloads
Published
Issue
Section
License
Copyright (c) 2008 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.