Modeling of deformation and fracture of fibrillar structures

Authors

  • Vitaliy Andreevich Kuzkin Institute for Problems in Mechanical Engineering RAS
  • Anton Miroslavovich Krivtsov Institute for Problems in Mechanical Engineering RAS

DOI:

https://doi.org/10.7242/1999-6691/2008.1.3.29

Keywords:

Abstract

In the present paper the simplest 2D model of the material on the basis of fibrils is proposed. The single fibril is represented as two-layer stripe consisting of particles which interact via Lennard-Jones potential. In order to create the material fibrils are randomly added on the plane and connected in the places of the intersections. Molecular dynamics simulation of the uniaxial tension of this material is carried out. Stress-strain diagram is obtained. It is shown that fracture of the material takes place for 3% deformation. At the same time fracture of the single fibril takes place for 10% deformation. The dependences of the Young modulus of the material on the initial distribution of fibrils and density of the sample are investigated. It is shown that in some particular cases Young modulus of the sample can be two times larger than averaged value. Mean square deviation is approximately 20%. It decreases with the density of the sample. Young modulus grows linearly with the increase of density. The parameter which characterizes the ordering of fibrils is introduced. It is shown that ordering can essentially increase Young modulus in ordering direction (till 2,5 times).

Downloads

Download data is not yet available.

References

Smith J.F., Knowles T.P.J., Dobson C.M., MacPhee C.E., Welland M.E. Characterization of the Nanoscale Properties of Individual Amyloid Fibrils // PNAS. - 2006. - V. 103, N. 43. - P. 15806-15811. DOI
Fukuma T., Mostaert A.S., Jarvis S.P. Explanation for the Mechanical Strength of Amyloid Fibrils // Tribology Letters. - 2006. - V. 22, N. 3. - P. 233- 237. DOI
Lee C.F. Nanoscale Properties of Amyloid Fibrils: a Theoretical Analysis. - Physics Department, Clarendon Laboratory, Oxford University, Oxford OX1 3PU UK (Preprint). - 2008. - 4p.
Dukov M.I., Sirotkin A.K., Grudinin M.P., Kiselev O.I. Fibrillogenez insulina in vitro // DAN.- 2008. - T. 419, No 5. - S. 700-702.
James H.M., Guth E. Theory of Elastic Properties of Rubber // J. Chem. Phys. - 1943. - V. 11, N. 10. - P. 455-481. DOI
Arruda E.M., Boyce M.C. A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials // J. Mech. Phys. Solids. - 1993. - V. 41, N. 2. -P. 389-412. DOI
Wu P.D., Van der Giessen E. On Improved Network Models for Rubber Elasticity and Their Applications to Orientation Hardening Glassy Polymers // J. Mech. Phys. Solids. - 1993. - V. 41, N. 3. - P. 427-456. DOI
Flory P.J., Rehner J. Statistical Mechanics of Cross-Linked Polymer Networks // J. Chem. Phys. - 1943. - V. 11, N. 11. - P. 512-520. DOI
Bischoff J.E., Arruda E.M., Grosh K. Finite Element Modeling of Human Skin Using an Isotropic, Nonlinear Elastic Constitutive Model // J. Biomechanics, - 2000. - V. 33. - P. 645-652. DOI
Bischoff J.E., Arruda E.M., Grosh K. A Microstructurally Based Orthotropic Hyperelastic Constitutive Lay // J. Appl. Mech. - 2002. - V. 69. - P. 570-579. DOI
Kuhl E., Garikipati K., Arruda E.A., Grosh K. Remodeling of Biological Tissue - Mechanically Induced Reorientation of a Transversely Isotropic Chain Network // J. Mech. Phys. Sol. - 2005. - V. 53. - P. 1552-1573. DOI
Head D.A., Levine A.J., MacKintosh F.C. Distinct Regimes of Elastic Response and Deformation Modes of Cross-Linked Cytoskeletal and Semiflexible Polymer Networks // Phys. Rev. E. - 2003. - V. 68. - P. 061907. DOI
Head D.A., Levine A.J., MacKintosh F.C. Mechanical Response of Semiflexible Networks to Localized Perturbations // Phys. Rev. E. - 2005. - V. 72. - P. 061914. DOI
Allen M.P., Tildesley A. K. Computer Simulation of Liquids. - Oxford: Clarendon Press, 1987. - 385 p.
Berendsten H.J.C., Van Gunsteren W.F. Practical Algorithms for Dynamic Simulations. Molecular Dynamics Simulation of Statistical Mechanical Systems // Proc. of 97th Enrico Fermi Summer School (Eds. Ciccotti G., Hoover W.G.) Verenna, North-Holland, Amsterdam. - 1985. - P. 43-65.
Krivcov A.M. Deformirovanie i razrusenie tverdyh tel s mikrostrukturoj. - M.: Fizmatlit, 2006. - 301s.
Nguyen H.D., Hall C.K., Prausnitz J. M. Molecular Dynamics Simulations of Spontaneous Fibril Formation by Random-Coil Peptides // Proceedings of the National Academy of Sciences of the United States of America. - 2004. - V. 101, N. 46. - P. 16180-16185. DOI
Krivcov A.M., Morozov N.F. Anomalii mehaniceskih svojstv nanorazmernyh ob"ektov // DAN. - 2001. - T. 381, No 3. - S. 345-347.
Ivanova E.A., Krivcov A.M., Morozov N.F. Osobennosti rasceta izgibnoj zestkosti nanokristallov // DAN. - 2002. - T. 385. No 4. - S. 494-496.

Published

2008-04-01

Issue

Section

Articles

How to Cite

Kuzkin, V. A., & Krivtsov, A. M. (2008). Modeling of deformation and fracture of fibrillar structures. Computational Continuum Mechanics, 1(3), 76-84. https://doi.org/10.7242/1999-6691/2008.1.3.29