Boundary-element analysis of the dynamic state of piecewise homogeneous elastic bodies using convolution quadratures

Authors

  • Alexandr Vladimirovich Amenitskiy Research Institute of Mechanics, Nizhny Novgorod State Lobachevsky University
  • Alexandr Alexandrovich Belov Research Institute of Mechanics, Nizhny Novgorod State Lobachevsky University
  • Leonid Alexandrovich Igumnov Research Institute of Mechanics, Nizhny Novgorod State Lobachevsky University
  • Svetlana Yurievna Litvinchuk Research Institute of Mechanics, Nizhny Novgorod State Lobachevsky University

DOI:

https://doi.org/10.7242/1999-6691/2008.1.3.22

Keywords:

Abstract

An approach to the analysis of 3-D dynamic problems of elasticity for piecewise homogeneous bodies using a BEM explicitly accounting for the time variable is presented. The boundary-element scheme of constructing a discrete analogue is used in combination with the convolution quadrature method. A novel scheme of the convolution quadrature method is constructed. The results of the BEM analysis are presented. The developed BEM-scheme is shown to be highly accurate.

Downloads

Download data is not yet available.

References

Bazenov V.G., Igumnov L.A. Metody granicnyh integral’nyh uravnenij i granicnyh elementov v resenii zadac trehmernoj dinamiceskoj teorii uprugosti s soprazennymi polami. - M.: Fizmatlit, 2008. - 352s.
Banerjee P.K., Ahmad S., Wang H.C. Advanced Development of BEM for Elastic and Inelastic Dynamic analysis of Solids // Industrial Application of Boundary Element Methods. (Banerjee P.K., Wilson R.B., eds.) / Developments in Boundary Element Methods. - London: Elsevier, 1989. - P. 77-177.
Karabalis D.L., Rizos D.C. Dynamic Analysis of 3-D Foundations // Boundary Element Techniques in Geomechanics / Manolis G.D., Davies T.G., eds. - London: Elsevier, 1993. - Ch. 6 - P. 177-208.
Antes H., Panagiotopoulos P.D. The Boundary Integral Approach to Static and Dynamic Contact Problems // Int. Series of Numerical Mathematics 108. - Basel: Birkhauser, 1992. - 313 p.
Beskos D.E. Boundary Element Methods in Dynamic Analysis // Applied Mechanics Review. - 1987. - V. 40, N. 1. - R. 1-23. DOI
Beskos D.E. Boundary element methods in dynamic analysis: Part II 1986-1996 // Appl. Mech. Reviews. - 1997. - V. 50. - P. 149-197. DOI
Schanz M. Wave Propogation in Viscoelastic and Poroelastic Continua. - Berlin Springer, 2001. - 170p.
Lubich C. Convolution quadrature and discretized operational calculus. I. // Numerische Mathematik. - 1988. - V. 52. - P. 129-145. DOI
Lubich C. Convolution quadrature and Discretized Operational Calculus. II // Numerische Mathematik. - 1988. - V. 52. - P. 413-425. DOI
De Hoop A.Y. Representation Theorems for the Displacement in an Elastic Solid and Their Application to Elastodynamic Diffraction Theory // Delft: Tech. Hogeschool, Dr. Sci. Thesis, 1958. - P. 195.
Novackij V. Teoria uprugosti. - M.: Mir, 1975. - 872s.
Cudinovic I.U. Metod granicnyh uravnenij v dinamiceskih zadacah teorii uprugosti. - Har’kov, 1990. - 121s.
Ugodcikov A.G., Hutoranskij N.M. Metod granicnyh elementov v mehanike deformiruemogo tverdogo tela. - Kazan’: Izd-vo KGU, 1986. - 296s.
Gaul L., Kogl M., Moser F., Schanz M. Boundary Element Methods for the Dynamic Analysis of Elastic, Viscoelastic, and Piezoelectric Solids // Encyclopedia of Computational Mechanics / Edited by E. Stein, R. de Borst and Thomas J. R. Hughes. V. 2: Solids and Structures. - Jhon Wiley & Sons, Ltd. - 2004. - P. 751-769.

Published

2008-04-01

Issue

Section

Articles

How to Cite

Amenitskiy, A. V., Belov, A. A., Igumnov, L. A., & Litvinchuk, S. Y. (2008). Boundary-element analysis of the dynamic state of piecewise homogeneous elastic bodies using convolution quadratures. Computational Continuum Mechanics, 1(3), 5-14. https://doi.org/10.7242/1999-6691/2008.1.3.22