Implementation of the level set method for modeling the dynamics of systems with fluid interfaces
DOI:
https://doi.org/10.7242/1999-6691/2008.1.2.15Keywords:
Abstract
A numerical algorithm for modeling the dynamics of two immiscible fluids with deformable interfaces based on the level set method is worked out. Numerical simulations of the Rayleigh -Taylor instability development and periodical patterns that arise at the fluid interface under horizontal vibrations are carried out. Calculations are made using adaptive mesh refinement and parallel programming techniques. The results are found to be in good agreement with the numerical and experimental data known from the literature.
Downloads
References
Osher S., Sethian J. Front Propagation with Curvature Dependent Speed: Algorithm Based on Hamilton-Jacobi Formulations. // J. Comp. Phys. - 1988. - V. 79 (1). - P. 12-49. DOI
Lubimov D.V., Lubimova T.P. Ob odnom metode skvoznogo sceta dla resenia zadac s deformiruemoj poverhnost’u razdela. // Modelirovanie v mehanike. - 1990. - T. 4 (21), No 1. - S. 136-140.
Brackbill J.U., Kothe D.B., Zemach C. A continuum method for modeling surface tension. // J. Comp. Phys. - 1992. - V. 100. - P. 335-354. DOI
MacNeice P., Olson K.M., Mobarry C., Fainchtein R., Packer C. PARAMESH: A parallel adaptive mesh refinement community toolkit // Computer Physics Communications.- 2000. - V. 126. - P. 330-354. DOI
http://www.physics.drexel.edu/~olson/paramesh-doc/Users_manual/amr.html.
http://acts.nersc.gov/aztec/index.htm.
Sussman M., Smereka P., Osher S. A level set approach for computing solutions to incompressible two-phase flow. // J. Comp. Phys. - 1994. - V. 114. - P. 146-159. DOI
http://www.uned.es/ind-4-mecanica-fluidos/anim-RT2.htm.
Lubimov D.V., Lubimova T.P., Cerepanov A.A. Dinamika poverhnostej razdela v vibracionnyh polah. M.: FIZMATLIT, 2003. - 216 s.
Ivanova A.A., Kozlov V.G., Evesk P. Dinamika granicy razdela nesmesivausihsa zidkostej pri gorizontal’nyh vibraciah // Izv. RAN: MZG. - 2001. - No 3. - S. 28-35.
Downloads
Published
Issue
Section
License
Copyright (c) 2008 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.