The algorithm of numerical solution of the cauchy problem for tresca's plasticity equations
DOI:
https://doi.org/10.7242/1999-6691/2008.1.1.1Keywords:
Abstract
The problem of propagation of plastic zones in an unbounded medium from the boundary of a convex surface under normal pressure, tangential forces and given velocities is studied. When the medium is in the state of full plasticity, the system of quasistatic ideal plasticity Tresca equations describing the stress-strain state is hyperbolic. The difference scheme applied to hyperbolic systems of equations is proposed for the numerical solution of this system.
Downloads
References
Islinskij A.U., Ivlev D.D. Matematiceskaa teoria plasticnosti. - M.: Fizmatlit, 2001. - 704 s.
Ivlev D.D., Islinskij A.U., Nepersin R.I. O harakteristiceskih sootnoseniah dla naprazenij i skorostej peremesenij prostranstvennoj zadaci ideal’no plasticeskogo tela pri uslovii polnoj plasticnosti // Dokl. RAN. - 2001. - T. 381. - No 5. - S. 616-622.
Bykovcev G.I., Vlasova I.A. Svojstva uravnenij prostranstvennoj zadaci teorii ideal’noj plasticnosti // Mehanika deformiruemyh sred: Mezvuz. sb. Kujbysev: Kujbys. gos. un-t, 1977. - Vyp. 2. - S. 33-68.
Radaev U.N. Prostranstvennaa zadaca matematiceskoj teorii plasticnosti. - Samara: Izd-vo Samar. gos. un-ta, 2006. - 340 s.
Voevodin A.F., Sugrin S.M. Metody resenia odnomernyh evolucionnyh sistem. - Novosibirsk: Nauka. Sib. otd-nie, 1993. - 368 s.
Ostapenko V.V. Giperboliceskie sistemy zakonov sohranenia i ih prilozenie k teorii melkoj vody (kurs lekcij). - Novosibirsk: Novosib. gos. un-t, 2004. - 180 s.
Kulikovskij A.G., Pogorelov N.V., Semenov A.U. Matematiceskie voprosy cislennogo resenia giperboliceskih sistem uravnenij. - M.: Fizmatlit, 2001. - 608 s.
Downloads
Published
Issue
Section
License
Copyright (c) 2008 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.