The algorithm of numerical solution of the cauchy problem for tresca's plasticity equations

Authors

  • Boris Dmitrievich Annin Lavrentyev Institute of Hydrodynamics SB RAS
  • Vladimir Vitalievich Alyokhin Lavrentyev Institute of Hydrodynamics SB RAS
  • Vladimir Viktorovich Ostapenko Lavrentyev Institute of Hydrodynamics SB RAS

DOI:

https://doi.org/10.7242/1999-6691/2008.1.1.1

Keywords:

Abstract

The problem of propagation of plastic zones in an unbounded medium from the boundary of a convex surface under normal pressure, tangential forces and given velocities is studied. When the medium is in the state of full plasticity, the system of quasistatic ideal plasticity Tresca equations describing the stress-strain state is hyperbolic. The difference scheme applied to hyperbolic systems of equations is proposed for the numerical solution of this system.

Downloads

Download data is not yet available.

References

Islinskij A.U., Ivlev D.D. Matematiceskaa teoria plasticnosti. - M.: Fizmatlit, 2001. - 704 s.
Ivlev D.D., Islinskij A.U., Nepersin R.I. O harakteristiceskih sootnoseniah dla naprazenij i skorostej peremesenij prostranstvennoj zadaci ideal’no plasticeskogo tela pri uslovii polnoj plasticnosti // Dokl. RAN. - 2001. - T. 381. - No 5. - S. 616-622.
Bykovcev G.I., Vlasova I.A. Svojstva uravnenij prostranstvennoj zadaci teorii ideal’noj plasticnosti // Mehanika deformiruemyh sred: Mezvuz. sb. Kujbysev: Kujbys. gos. un-t, 1977. - Vyp. 2. - S. 33-68.
Radaev U.N. Prostranstvennaa zadaca matematiceskoj teorii plasticnosti. - Samara: Izd-vo Samar. gos. un-ta, 2006. - 340 s.
Voevodin A.F., Sugrin S.M. Metody resenia odnomernyh evolucionnyh sistem. - Novosibirsk: Nauka. Sib. otd-nie, 1993. - 368 s.
Ostapenko V.V. Giperboliceskie sistemy zakonov sohranenia i ih prilozenie k teorii melkoj vody (kurs lekcij). - Novosibirsk: Novosib. gos. un-t, 2004. - 180 s.
Kulikovskij A.G., Pogorelov N.V., Semenov A.U. Matematiceskie voprosy cislennogo resenia giperboliceskih sistem uravnenij. - M.: Fizmatlit, 2001. - 608 s.

Published

2008-04-01

Issue

Section

Articles

How to Cite

Annin, B. D., Alyokhin, V. V., & Ostapenko, V. V. (2008). The algorithm of numerical solution of the cauchy problem for tresca’s plasticity equations. Computational Continuum Mechanics, 1(1), 5-13. https://doi.org/10.7242/1999-6691/2008.1.1.1