On one solution to the problem of resonant oscillations of a lifting rope taking into account its slippage when winding on the surface of a drum

Authors

DOI:

https://doi.org/10.7242/1999-6691/2025.18.3.24

Keywords:

oscillations of systems with moving boundaries, variable length rope, resonance properties, numerical methods, integro-differential equations, oscillation amplitude

Abstract

In this paper, we develop a mathematical model and methods for analyzing a non-classical problem of longitudinal oscillations of a rope, the upper end of which is wound on a drum, and a load is fixed to its second end. Taking into account the slippage of rope elements along the drum rim allows one to adequately describe the real dynamic processes in the system. Representing the problem of rope oscillations with moving boundaries as a differential equation with non-integrable boundary conditions provides a non-classical generalization of the hyperbolic problem. The linearization of boundary conditions by the method of averaged estimates simplifies the initial statement of the problem. The construction of equivalent integro-differential equations with symmetric and time-dependent kernels, as well as with time-varying integration limits, creates the basis for applying the apparatus of integral equations. Consideration of cases both with and without slippage provides a comprehensive analysis of the dynamic characteristics of the system. Reducing the integro-differential equation to a dimensionless form by introducing new variables unifies the mathematical model. The solution of the obtained integro-differential equation without taking into account slippage using a combination of the approximate method for constructing solutions of integro-differential equations and the Kantorovich-Galerkin method demonstrates the acceptable level of accuracy for calculations. The expression for the amplitude of oscillations corresponding to the n-th dynamic mode, obtained by the asymptotic method, is an analytical basis for analyzing the resonance properties. The study of the phenomenon of steady-state resonance and passage through resonance of the system by numerical methods and the developed software package has practical value for the dynamic calculation of lifting devices.

Downloads

Download data is not yet available.

References

Semenov A.L., Litvinov V.L., Shamolin M.V. Study of the Influence of Boundary Motion on the Oscillatory and Resonance Properties of Mechanical Systems with Variable Length. Computational Mathematics and Information Technologies. 2025. Vol. 9, no. 2. P. 34–43. DOI: 10.23947/2587-8999-2025-9-2-34-43

Samarin I.P. On a nonlinear problem of the wave equation in one-dimensional space. Journal of Applied Mathematics and Mechanics. 1964. Vol. 28. P. 667–668. DOI: 10.1016/0021-8928(64)90112-1

Vesnitskiy A.I. Volny v sistemakh s dvizhushchimisya granitsami i nagruzkami. Moscow: Fizmatlit, 2001. 320 p.

Litvinov V.L. Variational formulation of the problem on vibrations of a beam with a moving spring-loaded support. Theoretical and Mathematical Physics. 2023. Vol. 215. P. 709–715. DOI: 10.1134/S0040577923050094

Ragul’skiy K.I. Voprosy dinamiki pretsizionnykh lentoprotyazhnykh mekhanizmov. Dinamika mashin. Moscow: Nauka, 1971. P. 169–177.

Ishlinskiy A.Y. Ob uravnenii prodol’nykh dvizheniy kanata (gibkoy niti) peremennoy dliny. Doklady Akademii nauk SSSR. 1954. Vol. 96, no. 3. P. 453–456.

Pinchuk N.A., Stolyar A.M. Ob odnoy nachal’no-krayevoy zadache s podvizhnoy granitsey. Proceedings of the Sixth All-Russian Scientific Conference with International Participation. Part 3: Differential Equations and Boundary Value Problems. Samara: SamGTU, 2009. P. 134–142.

Pen’kov A.M. Bokovyye kolebaniya i rezonans pod”yemnykh kanatov. Doklady Akademii nauk USSR. 1947. No. 1. P. 23–27.

Movsisyan L.A. Kolebaniya polubeskonechnoy balki s peremeshchayushchimsya kontsom. Inzhenernyy zhurnal. Mekhanika tverdogo tela. 1966. No. 1. P. 174–176.

Rakhmatulin K.A., Dem’yanov Y.A. Prochnost’ pri intensivnykh kratkovremennykh nagruzkakh. Moscow: Fizmatgiz, 1961. 399 p.

Dinnik A.N. Ob opasnosti rezonansa v pod”yemnikakh s bitsilindro-konicheskimi barabanami. Gornyy zhurnal. 1932. No. 12. P. 34–42.

Lokshin A.S. O dinamicheskikh napryazheniyakh v pod”yemnykh kanatakh. Gornyy zhurnal. Prilozheniye. 1929. No. 12. P. 56–64.

Bogolyubov N.N., Mitropol’skiy Y.A. Asimptoticheskiye metody v teorii nelineynykh kolebaniy. Moscow: Nauka, 1974. 504 p.

Lezhneva A.A. Izgibnyye kolebaniya balki peremennoy dliny. Mechanics of Solids. 1970. No. 1. P. 159–161.

Litvinov V.L., Litvinova K.V. Primeneniye priblizhennogo metoda Kantorovicha-Galerkina dlya analiza kolebaniy mekhanicheskikh sistem s podvizhnymi granitsami. XXIII Winter School on Continuum Media Mechanics, 13–17 February 2023, Perm, Russian Federation. Abstract Book. 2023. P. 199.

Anisimov V.N., Litvinov V.L. Investigation of the resonant properties of mechanical objects with moving boundaries using the Kantorovich-Galerkin method. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences. 2009. No. 1. P. 149–158. DOI: 10.14498/vsgtu658/

Anisimov V.N., Korpen I.V., Litvinov V.L. Application of the Kantorovich-Galerkin Method for Solving Boundary Value Problems with Conditions on Moving Borders. Mechanics of Solids. 2018. Vol. 53. P. 177–183. DOI: 10.3103/S0025654418020085

Litvinov V.L., Litvinova K.V. Using the Kantorovich–Galerkin approach to analyze the resonant characteristics of damped systems. Theoretical and Mathematical Physics. 2025. Vol. 224. P. 1211–1219. DOI: 10.1134/S0040577925070098

Litvinov V.L. Solution of boundary value problems with moving boundaries by an approximate method for constructing solutions of integro-differential equations. Trudy Instituta Matematiki i Mekhaniki UrO RAN. 2020. Vol. 26, no. 2. P. 188–199. DOI: 10.21538/0134-4889-2020-26-2-188-199

Litvinov V.L., Litvinova K.V. An Approximate Method for Solving Boundary Value Problems with Moving Boundaries by Reduction to Integro-Differential Equations. Computational Mathematics and Mathematical Physics. 2022. Vol. 62. P. 945–954. DOI: 10.1134/S0965542522060112

Litvinov V.L., Shamolin M.V. On an asymptotic method for solving homogeneous integro-differential equations describing vibrations of objects with moving boundaries. Sibirskii Zhurnal Industrial’noi Matematiki. 2025. Vol. 28, no. 2. P. 39–54. DOI: 10.33048/SIBJIM.2025.28.203

Neronov N.P. O maksimal’nykh natyazheniyakh v pod”yemnom shakhtnom kanate pri normal’nom rezhime pod”yema. Minerals and Mining Engineering. 1959. No. 10. P. 107–112.

Savin G.N. Ob osnovnykh uravneniyakh shakhtnogo pod”yemnogo kanata. Prikladnaya mekhanika. Prikladnaia Mekhanika. 1955. Vol. 1, no. 1. P. 15–24.

Savin G.N., Goroshko O.A. Dinamika niti peremennoy dliny. Kiev: Izdatel’stvo AN USSR, 1962. 327 p.

Goroshko O.A., Kerimbayeva O.B. Prodol’nyye kolebaniya perematyvayemoy niti v postanovke negolonomnoy mekhaniki. Dinamika sistem, nesushchikh podvizhnuyu nagruzku. Kharkov, 1982. P. 28–35.

Litvinov V.L., Anisimov V.N. Matematicheskoye modelirovaniye i issledovaniye rezonansnykh svoystv mekhanicheskikh ob”yektov s izmenyayushcheysya granitsey. Samara: SamGTU, 2020. 118 p.

Litvinov V.L. Automated software complex for researching oscillations and resonance phenomena in mechanical systems with moving boundaries "TB-Analysis-7": Certificate of state registration of computer program No. 2025613649; registration date 13.02.2025. 2025

Anisimov V.N., Litvinov V.L., Korpen I.V. On one method for obtaining an exact solution of the wave equation describing oscillations of mechanical systems with moving boundaries. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences. 2012. No. 3. P. 145–151. DOI: 10.14498/vsgtu1079

Litvinov V.L., Litvinova K.V. An Inverse Method for Solving Problems about Oscillations of Mechanical Systems with Moving Boundaries. Moscow University Mechanics Bulletin. 2024. Vol. 79. P. 90–96. DOI: 10.3103/S0027133024700122

Selivanova N.Y., Shamolin M.V. Local solvability of a one-phase problem with free boundary. Journal of Mathematical Sciences. 2013. Vol. 189. P. 274–283. DOI: 10.1007/s10958-013-1184-1

Selivanova N.Y., Shamolin M.V. Studying the interphase zone in a certain singular-limit problem. Journal of Mathematical Sciences. 2013. Vol. 189. P. 284–293. DOI: 10.1007/s10958-013-1185-0

Erofeev V.I., Leont’eva A.V. Quasiharmonic longitudinal wave propagating in a Mindlin–Herrmann rod in a nonlinearly elastic environment. Theoretical and Mathematical Physics. 2022. Vol. 211. P. 625–641. DOI: 10.1134/S004057792205004X

Erofeev V.I., Lisenkova E.E. Obshchiye sootnosheniya dlya voln, rasprostranyayushchikhsya v odnomernykh uprugikh sistemakh. Mathematical Methods of Mechanics. On the 90th Anniversary of Academician A.G. Kulikovsky, 20–24 March 2023, Moscow. Abstract Book. 2023. P. 26.

Published

2025-12-14

Issue

Section

Articles

How to Cite

Litvinov, V. L., Shamolin, M. V., & Litvinova, K. V. (2025). On one solution to the problem of resonant oscillations of a lifting rope taking into account its slippage when winding on the surface of a drum. Computational Continuum Mechanics, 18(3), 332-345. https://doi.org/10.7242/1999-6691/2025.18.3.24