Numerical simulation of flux expulsion in a plain channel MHD flow
DOI:
https://doi.org/10.7242/1999-6691/2025.18.3.20Keywords:
magnetohydrodynamics, plain channel, flux expultion, verificationAbstract
Numerical simulation of forced magnetohydrodynamic (MHD) channel flow is performed under conditions where the magnetic Reynolds number is comparable to or significantly exceeds 1. The dimensionless parameters of the problem, used for verification, correspond to flow regimes characterized by the complex MHD interaction between the flow and the magnetic field. The aim of this work is to verify and analyze the performance and accuracy of numerical simulation software packages COMSOL Multiphysics, ANES, OpenFOAM, and Elmer in application to two different formulations of the considered problem: one written in terms of the induced magnetic field, and the other in terms of the magnetic vector potential. The results of the author's calculations are compared with the results from the approximate analytical solution for a one-dimensional formulation and with those from other authors. A comparative analysis indicates the key role of a nonlinear term in the equation of motion, which correctly models the phenomenon of hydraulic resistance crisis during the transition from Hartmann flow to Poiseuille flow. Neglecting this term leads to significant errors in the representation, especially, of unsteady Poiseuille flow. The computational experiments conducted by the authors, as well as those known from literature sources, show that the models of all software packages tested in this work are capable of reproducing the main flow patterns; however, the highest accuracy is achieved with strict adherence to the Courant criterion. The model implemented in OpenFOAM demonstrates values especially close to the published values in the Poiseuille regime. In terms of computational efficiency, the best performance is shown by the OpenFOAM system (open-source) and the freely distributed ANES, both implemented using the finite volume method. The finite element models of COMSOL and Elmer packages are characterized by longer computation time and lower parallelization efficiency. Based on the obtained results, one can select software packages that are best suited for numerical simulation of specific unsteady MHD flows in fusion-related problems.
Downloads
References
Abdou M., Morley N.B., Smolentsev S., Ying A., Malang S., Rowcliffe A., Ulrickson M. Blanket/first wall challenges and required R&D on the pathway to DEMO. Fusion Engineering and Design. 2015. Vol. 100. P. 2–43. DOI: 10.1016/j.fusengdes.2015.07.021
Smolentsev S., Rhodes T., Pulugundla G., Courtessole C., Abdou M., Malang S., Tillack M., Kessel C. MHD thermohydraulics analysis and supporting R&D for DCLL blanket in the FNSF. Fusion Engineering and Design. 2018. Vol. 135. P. 314–323. Special Issue: FESS-FNSF Study. DOI: 10.1016/j.fusengdes.2017.06.017
Eardley-Brunt R.W., Dubas A.J., Davis A. On scalable liquid-metal MHD solvers for fusion breeder blanket multiphysics applications. Plasma Physics and Controlled Fusion. 2023. Vol. 66, no. 1. 015015. DOI: 10.1088/1361-6587/ad100a
Siriano S., Melchiorri L., Pignatiello S., Tassone A. A multi-region and a multiphase MHD OpenFOAM solver for fusion reactor analysis. Fusion Engineering and Design. 2024. Vol. 200. 114216. DOI: 10.1016/j.fusengdes.2024.114216
Lehnen M., Aleynikova K., Aleynikov P.B., et al. Disruptions in ITER and strategies for their control and mitigation. Journal of Nuclear Materials. 2015. Vol. 463. P. 39–48. DOI: 10.1016/j.jnucmat.2014.10.075
Artola F.J., Loarte A., Hoelzl M., Lehnen M., Schwarz N., the J.T. Non-axisymmetric MHD simulations of the current quench phase of ITER mitigated disruptions. Nuclear Fusion. 2022. Vol. 62, no. 5. 056023. DOI: 10.1088/1741-4326/ac55ba
Boozer A.H. Theory of tokamak disruptions. Physics of Plasmas. 2012. Vol. 19, no. 5. 058101. DOI: 10.1063/1.3703327
Bandaru V., Boeck T., Schumacher J. Turbulent magnetohydrodynamic flow in a square duct: Comparison of zero and finite magnetic Reynolds number cases. Physical Review Fluids. 2018. Vol. 3, issue 8. 083701. DOI: 10.1103/PhysRevFluids.3.083701
Smolentsev S. A model and assessments of the effect of transient plasma on liquid metal flows in a fusion blanket. Fusion Engineering and Design. 2025. Vol. 213. 114854. DOI: 10.1016/j.fusengdes.2025.114854
Smolyanov I., Zikanov O. Exploratory study of liquid-metal response to rapid variation of applied magnetic field. Physical Review E. 2025. Vol. 111, issue 6. 065104. DOI: 10.1103/nm74-f77r
Kawczynski C., Smolentsev S., Abdou M. Characterization of the lid-driven cavity magnetohydrodynamic flow at finite magnetic Reynolds numbers using far-field magnetic boundary conditions. Physics of Fluids. 2018. Vol. 30, no. 6. 067103. DOI: 10.1063/1.5036775
Saenz F., Fisher A.E., Al-Salami J., et al. Experimental, numerical and analytical evaluation of j×B-thrust for fast-liquid- metal-flow divertor systems of nuclear fusion devices. Nuclear Fusion. 2023. Vol. 63, no. 9. 096015. DOI: 10.1088/1741-4326/ace9e9
Wynne B., Saenz F., Al-Salami J., Xu Y., Sun Z., Hu C., Hanada K., Kolemen E. FreeMHD: Validation and verification of the open-source, multi-domain, multi-phase solver for electrically conductive flows. Physics of Plasmas. 2025. Vol. 32, no. 1. 013907. DOI: 10.1063/5.0230242
Sun Z., Al Salami J., Khodak A., Saenz F., Wynne B., Maingi R., Hanada K., Hu C.H., Kolemen E. Magnetohydrodynamics in free surface liquid metal flow relevant to plasma-facing components. Nuclear Fusion. 2023. Vol. 63, no. 7. 076022. DOI: 10.1088/1741-4326/acd864
Sokolov I., Kolesnikov Y., Thess A. Experimental investigation of the transient phase of the Lorentz force response to the time- dependent velocity at finite magnetic Reynolds number. Measurement Science and Technology. 2014. Vol. 25, no. 12. 125304. DOI: 10.1088/0957-0233/25/12/125304
Bandaru V., Sokolov I., Boeck T. Lorentz Force Transient Response at Finite Magnetic Reynolds Numbers. IEEE Transactions on Magnetics. 2016. Vol. 52, no. 8. P. 1–11. DOI: 10.1109/TMAG.2016.2546229
Kamkar H., Moffatt H.K. A dynamic runaway effect associated with flux expulsion in magnetohydrodynamic channel flow. Journal of Fluid Mechanics. 1982. Vol. 121. P. 107–122. DOI: 10.1017/S0022112082001815
Bandaru V., Pracht J., Boeck T., Schumacher J. Simulation of flux expulsion and associated dynamics in a two-dimensional magnetohydrodynamic channel flow. 2015. DOI: 10.1007/s00162-015-0352-y
Smolyanov I.A., Shmakov E.I., Baake E., Guglielmi M. Verification of the code to calculate duct flow affected by external magnetic field. Computational Continuum Mechanics. 2021. Vol. 14, no. 3. P. 322–332. DOI: 10.7242/1999-6691/2021.14.3.27
Smolianov I., Shmakov E., Vencels J. Numerical analysis of liquid flows exposed to travelling magnetic field. 1. idealized numerical experiment. Magnetohydrodynamics. 2021. Vol. 57, no. 1. P. 105–120. DOI: 10.22364/mhd.57.1.9
Smolianov I., Shmakov E., Vencels J. Numerical analysis of liquid flows exposed to travelling magnetic field. 2. mhd instabilities due to magnetic end effects. Magnetohydrodynamics. 2021. Vol. 57, no. 1. P. 121–132. DOI: 10.22364/mhd.57.1.10
Bandaru V., Boeck T., Krasnov D., Schumacher J. A hybrid finite difference–boundary element procedure for the simulation of turbulent MHD duct flow at finite magnetic Reynolds number. Journal of Computational Physics. 2016. Vol. 304. P. 320–339. DOI: 10.1016/j.jcp.2015.10.007
Müller U., Bühler L. Magnetofluiddynamics in Channels and Containers. 2001. 210 p. DOI: 10.1007/978-3-662-04405-6
Fontana M., Mininni P.D., Bruno O.P., Dmitruk P. Vector potential-based MHD solver for non-periodic flows using Fourier continuation expansions. Computer Physics Communications. 2022. Vol. 275. 108304. DOI: 10.1016/j.cpc.2022.108304
OpenFOAM v11 User Guide. 2023. URL: https://doc.cfd.direct/openfoam/user-guide-v11/(accessed: 20.7.2025)
Moffatt K. The Generation of Magnetic Fields in Electrically Conducting Fluids. Cambridge University Press, 1978. 343 p.
Brandenburg A., Subramanian K. Astrophysical magnetic fields and nonlinear dynamo theory. Physics Reports. 2005. Vol. 417, no. 1–4. P. 1–209. DOI: 10.1016/j.physrep.2005.06.005
Sokoloff D.D., Stepanov R.A., Frick P.G. Dynamos: from an astrophysical model to laboratory experiments. Physics-Uspekhi. 2014. Vol. 57. P. 292–311.
Tessier J., Poulin F.J., Hughes D.W. Dynamic expulsion of magnetic flux by vortices. Physical Review Fluids. 2025. Vol. 10, issue 5. 053702. DOI: 10.1103/PhysRevFluids.10.053702
Krasnov D., Zikanov O., Boeck T. Numerical study of magnetohydrodynamic duct flow at high Reynolds and Hartmann numbers. Journal of Fluid Mechanics. 2012. Vol. 704. P. 421–446. DOI: 10.1017/jfm.2012.256
Krasnov D.S., Zienicke E., Zikanov O., Boeck T., Thess A. Numerical study of the instability of the Hartmann layer. Journal of Fluid Mechanics. 2004. Vol. 504. P. 183–211. DOI: 10.1017/S0022112004008006
Greenshields C.J., Weller H.G. Notes on Computational Fluid Dynamics: General Principles. CFD Direct, 2022. 314 p. 33. CFD code ANES. URL: http://anes.ch12655.tmweb.ru/ (accessed: 11.7.2025)
Artemov V.I., Makarov M.V., Minko K.B., Yankov G.G. Assessment of performance of subgrid stress models for a LES technique for predicting suppression of turbulence and heat transfer in channel flows under the influence of body forces. International
Journal of Heat and Mass Transfer. 2020. Vol. 146. 118822. DOI: 10.1016/j.ijheatmasstransfer.2019.118822
Artemov V.I., Makarov M.V., Yankov G.G., Minko K.B. Numerical Investigation of the Effect of the Wall Properties on Downward
Mercury Flow and Temperature Fluctuations in a Vertical Heated Pipe under a Transverse Magnetic Field. International Journal of Heat and Mass Transfer. 2024. Vol. 218. 124746. DOI: 10.1016/j.ijheatmasstransfer.2023.124746
Raback P., Malinen M., Ruokolainen J., Pursula A., Zwinger T. Elmer Models Manual. 2024. URL: https://www.nic.funet.fi/pub/sci/physics/elmer/doc/ElmerModelsManual.pdf (accessed: 27.7.2025)
Kruis N.J.F. Development and Application of a Numerical Framework for Improving Building Foundation Heat Transfer Calculations: PhD thesis / Kruis Nathanael J. F. University of Colorado, Boulder, 2015. 215 p.
He Q., Chen H., Feng J. Acceleration of the OpenFOAM-based MHD solver using graphics processing units. Fusion Engineering and Design. 2015. Vol. 101. P. 88–93. DOI: 10.1016/j.fusengdes.2015.09.017
Kirko I.M., Kirko G.E. Magnitnaya gydrodynamika. Sovremennoye videniye problem. Moscow-Izhevsk: NIC Regulyarnaya i haoticheskaya dynamika, Izhevskiy Institut kompyuternykh issledovaniy, 2009. 632 p.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Computational Continuum Mechanics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.