A three-phase hydrodynamic phase field model with stabilization of the Cahn-Hilliard equation
DOI:
https://doi.org/10.7242/1999-6691/2025.18.3.19Keywords:
phase field method, Cahn-Hilliard equation, three-phase mediaAbstract
A numerical implementation of a three-phase hydrodynamic phase-field model is presented, which combines the Navier-Stokes equations for incompressible fluid and the Cahn-Hilliard equation. The phase field model is highly capable for modeling multiphase media, but the numerical implementation of the phase field method has a number of computational difficulties associated with the stability of numerical schemes and, as a consequence, the need to choose a small time step, which complicates the calculations. The paper proposes a method for stabilizing the numerical algorithm by adding a fictitious relaxation derivative of the chemical potential, which reduces the spectral radius of the iteration matrix for the Cahn-Hilliard equation and allows a significant increase in the time step without losing stability. The implementation uses semi-implicit discretization and the projection method to calculate the velocity and pressure. Verification calculations are performed in a square domain with solid walls for a model fluid consisting of three phases. In static tests for different values of surface tension coefficients, equilibrium configurations were obtained in accordance with the expected contact angles at the junction of the three phases. In dynamic tests, it was shown that the model correctly reproduces the fall of a drop through the boundary of a two-layer system, as well as the collision of two particles of different phases moving in the third phase.
Downloads
References
Borzenko E.I., Hegaj E.I. Numerical investigation of the reservoir filling with a Newtonian fluid using the VoF-method. Tomsk State University Journal of Mathematics and Mechanics. 2019. No. 60. P. 73-86. DOI: 10.17223/19988621/60/6
Tsepelev I.A., Starodubtsev I.S. The numerical modeling of lava dome evolution at volcan de Colima using VOF and SPH methods. Computational Continuum Mechanics. 2022. Vol. 15, no. 3. P. 263-273. DOI: 10.7242/1999-6691/2022.15.3.20
Lyubimova T.P., Ivantsov A.O., Khlybov O.A. Application of level set method for modeling of immiscible liquids with large surface tension. Computational Continuum Mechanics. 2025. Vol. 17, no. 4. P. 509-518. DOI: 10.7242/1999-6691/2024.17.4.41
Cahn J.W., Hilliard J.E. Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics. 1958. Vol. 28, no. 2. P. 258-267. DOI: 10.1063/1.1744102. eprint: https://pubs.aip.org/aip/jcp/article-pdf/28/2/258/18813541/258_l_online.pdf
Cahn J.W. On spinodal decomposition. Acta Metallurgica. 1961. Vol. 9, no. 9. P. 795-801. DOI: 10.1016/0001-6160(61) 90182-1
Landau L.D., Lifshitz E.M. Course of Theoretical Physics. Vol. 5. Statistical Physics. Elsever, 2013. 544 p.
Cahn J.W. On spinodal decomposition. Acta Metallurgica. 1961. Vol. 9, no. 9. P. 795-801. DOI: 10.1016/0001-6160(61) 90182-1
Cahn J.W. Coherent fluctuations and nucleation in isotropic solids. Acta Metallurgica. 1962. Vol. 10, no. 10. P. 907-913. DOI: 10.1016/0001-6160(62)90140-2
Korteweg D.J. Sur la forme que prennent les equations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considerables mais connues et sur la théorie de la capillarité dans l’hypothese d’une variation continue de la densité. Archives Néerlandaises des Sciences Exactes et Naturelles. 1901. Vol. 6, no. 2. P. 1-24.
Lyubimova T, Vorobev A., Prokopev S. Rayleigh-Taylor instability of a miscible interface in a confined domain. Physics of Fluids. 2019. Vol. 31, no. 1.014104. DOI: 10.1063/1.5064547
Vorobev A., Prokopev S., Lyubimova T. Liquid/liquid displacement in a vibrating capillary. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2023. Vol. 381, no. 2245. 20220090. DOI: 10.1098/rsta.2022.0090
Gruzd S.A., Samsonov D.S., Krivilyov M.D. Mathematical model of solder flow in a vertical tube at different gravity levels taking into account the wetting and melting processes. Computational Continuum Mechanics. 2024. Vol. 17, no. 4. P. 442-451. DOI: 10.7242/1999-6691/2024.17.4.36
Boettinger W.J., Warren J.A., Beckermann C., Karma A. Phase-Field Simulation of Solidification. Annual Review of Materials Research. 2002. Vol. 32. P. 163-194. DOI: 10.1146/aimurev.matsci.32.101901.155803
Prokopev S., Nepomnyashchy A., Lyubimova T. The spectral radius of iterative methods for the Cahn-Hilliard equation and its relation to the splitting technique. Journal of Computational and Applied Mathematics. 2025. Vol. 470. 116673. DOI: 10.1016/j.cam.2025.116673
Eyre D.J. Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation. MRS Proceedings. 1998. Vol. 529. P. 39. DOI: 10.1557/PR0C-529-39
Kim J. Phase-Field Models for Multi-Component Fluid Flows. Communications in Computational Physics. 2012. Vol. 12, no. 3. P. 613-661. DOI: 10.4208/cicp. 301110.040811a
Boyer F., Lapuerta C. Study of a three component Cahn-Hilliard flow model. ESAIM: Mathematical Modelling and Numerical Analysis. 2006. Vol. 40, no. 4. P. 653-687. DOI: 10.1051/m2an: 2006028
Kim J. Phase field computations for ternary fluid flows. Computer Methods in Applied Mechanics and Engineering. 2007. Vol. 196, no. 45-48. P. 4779-4788. DOI: 10.1016/j.cma.2007.06.016
Vorobev A. Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations. Physical Review E. 2010. Vol. 82, issue 5. 056312. DOI: 10.1103/PhysRevE .82.056312
Jacqmin D. Calculation of Two-Phase Navier-Stokes Flows Using Phase-Field Modeling. Journal of Computational Physics. 1999. Vol. 155, no. 1. P. 96-127. DOI: 10.1006/jcph.1999.6332
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Computational Continuum Mechanics

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.