MHD-stirring of a heavy impurity under a rotating magnetic field generated by a multi-section inductor

Authors

DOI:

https://doi.org/10.7242/1999-6691/2025.18.2.10

Keywords:

sectional inductor, rotating magnetic field, magnetohydrodynamics, impurity stirring, multiphase media, numerical simulation

Abstract

We study numerically the efficiency of stirring a two-phase dispersed fluid (liquid metal with impurity particles) in a cylindrical cell using a multiphase two-fluid model. The stirring is driven by an electromagnetic force generated by a sectional rotating magnetic field inductor. The inductor consists of six annular segments evenly distributed along the height of the cell. Each segment generates a rotating magnetic field independently. We consider three electromagnetic force configurations. The first configuration corresponds to a co-directional rotation of the magnetic fields of all six inductors, matching the case of a classical rotating magnetic field. In the second configuration, the three upper rings generate a magnetic field rotating in one direction, while the lower three rotate in the opposite direction. In the third configuration, the rotation directions of the magnetic fields alternate along the cell height. We introduce a parameter characterizing the inhomogeneity of the impurity distribution. It was shown that the most efficient mixing is achieved in the second configuration, which is attributed to the emergence of a large-scale oscillatory flow regime. The uniform rotating magnetic field configuration provides the least efficient mixing due to low poloidal velocity. In the third configuration, oscillations in the impurity distribution inhomogeneity parameter associated with the chaotic nature of the flow are observed. The optimal stirring time at which the degree of impurity distribution inhomogeneity is the least is determined.

Downloads

Download data is not yet available.
Supporting Agencies
The work was carried out within the framework of the state assignment of the ICMM UB RAS (topic No. 124012300246-9).

References

Moffatt H.K. Electromagnetic stirring. Physics of Fluids A: Fluid Dynamics. 1991. Vol. 3, no. 5. P. 1336–1343. DOI: 10.1063/1.858062

Jie J.C., Zou Q.C., Sun J.L., Lu Y.P.,Wang T.M., Li T.J. Separation mechanism of the primary Si phase from the hypereutectic Al–Si alloy using a rotating magnetic field during solidification. Acta Materialia. 2014. Vol. 72. P. 57–66. DOI: 10.1016/j.actamat.2014.03.031

Murty B.S., Kori S.A., Chakraborty M.Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. International Materials Reviews. 2002. Vol. 47, no. 1. P. 3–29. DOI: 10.1179/095066001225001049

Denisov S.,Dolgikh V., Khripchenko S., Kolesnichenko I., Nikulin L. The effect of traveling and rotating magnetic fields on the structure of aluminum alloy during its crystallization in a cylindrical crucible. Magnetohydrodynamics. 2014. Vol. 50, no. 4. P. 407–422. DOI: 10.22364/mhd.50.4.8

Al-Omari K., Roósz A., Rónaföldi A., Veres Z. Effect of ForcedMelt Flow on Al–Si Eutectic-AlloyMicrostructures. Crystals. 2022. Vol. 12, no. 5. 731. DOI: 10.3390/cryst12050731

Timofeev V., Pervukhin M., Vinter E., Sergeev N. Behavior of non-conducting particles in molten aluminium cast into electromagnetic molds. Magnetohydrodynamics. 2020. Vol. 56, no. 4. P. 459–472. DOI: 10.22364/mhd.56.4.10

Liu D.-d., Zhou Y.-j., Yang R., et al. Effect of electromagnetic stirring current on the mechanical properties of Cu-15Ni-8Sn alloy and its mechanism of inducing dendrite refinement and Sn distribution homogenization. Materials Today Communications. 2023. Vol. 37. 107224. DOI: 10.1016/j.mtcomm.2023.107224

Grants I.,Gerbeth G. The suppression of temperature fluctuations by a rotating magnetic field in a high aspect ratio Czochralski configuration. Journal of Crystal Growth. 2007. Vol. 308, no. 2. P. 290–296. DOI: 10.1016/j.jcrysgro.2007.09.002

Liu H., Zeng Z.,Qiu Z., Yin L., Xiao Y. Effect of rotating magnetic field on instabilities of thermocapillary flow in a Czochralski silicon melt pool. Physics of Fluids. 2020. Vol. 32, no. 10. DOI: 10.1063/5.0024416

Davidson P.A.,Hunt J.C.R. Swirling recirculating flow an a liquid-metal column generated by a rotating magnetic field. Journal of Fluid Mechanics. 1987. Vol. 185. P. 67–106. DOI: 10.1017/s0022112087003082

Kolesnichenko I., Khalilov R., Khripchenko S., Pavlinov A.MHD-stirrer for cylindrical molds of continuous casting machines fabricated aluminium alloy. Magnetohydrodynamics. 2012. Vol. 48, no. 1. P. 221–233.

Kolesnichenko I., Pavlinov A., Khalilov R. Movement of solid-liquid interface in gallium alloy under the action of rotating magnetic field. Magnetohydrodynamics. 2013. Vol. 49, no. 1/2. P. 191–199. DOI: 10.22364/mhd.49.1-2.23

Räbiger D.,Eckert S.,Gerbeth G.,Franke S.,Czarske J. Flow structures arising frommelt stirring bymeans of modulated rotating magnetic fields. Magnetohydrodynamics. 2012. Vol. 48, no. 1. P. 213–220. DOI: 10.22364/mhd.48.1.24

Losev G.L., Kolesnichenko I.V., Khalilov R.I.Control of the metal crystallization process by the modulated traveling magnetic field. Journal of Physics: Conference Series. 2018. Vol. 1128. 012051. DOI: 10.1088/1742-6596/1128/1/012051

Nikrityuk P.A.,Ungarish M., Eckert K.,Grundmann R. Spin-up of a liquid metal flow driven by a rotating magnetic field in a finite cylinder: A numerical and an analytical study. Physics of Fluids. 2005. Vol. 17, no. 6. DOI: 10.1063/1.1897323

Vogt T.,Grants I., Räbiger D., Eckert S.,Gerbeth G.On the formation of Taylor–Görtler vortices in RMF-driven spin-up flows. Experiments in Fluids. 2011. Vol. 52, no. 1. P. 1–10. DOI: 10.1007/s00348-011-1196-x

Nikrityuk P.A., Ungarish M., Eckert K., Grundmann R. Losev, G. and Shvydkiy, E. and Sokolov, I. and Pavlinov, A. and Kolesnichenko, I.. Magnetohydrodynamics. 2019. Vol. 55, no. 1/2. P. 107–114. DOI: 10.22364/mhd.55.1-2.13

Khripchenko S.Y.,Dolgikh V.M., Siraev R.R.Distribution of titanium diboride microparticles introduced into aluminum ingot by MHD-stirring of a crystallizing melt. Computational ContinuumMechanics. 2022. Vol. 15, no. 4. P. 438–448. DOI: 10.7242/1999-6691/2022.15.4.34

Kolesnichenko I.,Okatev R. Equalisation the toroidal and poloidal kinetic energies of liquid metal stirring flow. The European Physical Journal Plus. 2024. Vol. 139, no. 9. DOI: 10.1140/epjp/s13360-024-05629-7

Kolesnichenko I.,Mamykin A., Khalilov R. Electromagnetic liquid metal stirrer: verification of the electromagnetic part of the problem. Bulletin of Perm University. Physics. 2022. No. 4. P. 45–51. DOI: 10.17072/1994-3598-2022-4-45-51

Ozernykh V.S., Losev G.L.,Golbraikh E., Kolesnichenko I.V. Initial stage of formation of vortex flow in an inductor with counter-rotating magnetic fields. Computational Continuum Mechanics. 2023. Vol. 16, no. 4. P. 493–503. DOI: 10.7242/1999-6691/2023.16.4.41

Losev L.G.,Okatev R.S.Measurement of the Dependence of the Effective Electrical Conductivity of LiquidMetals with Solid Particles on the Volume Fraction of an Impurity. Russian Metallurgy (Metally). 2024. Vol. 2024. P. 65–71. DOI: 10.1134/s0036029524701374

Kolesnichenko I.V.,Khalilov R.I. Extremum in the dependence of the head generated by electromagnetic pump of liquid metal on feeding current frequency. Computational ContinuumMechanics. 2022. Vol. 15, no. 4. P. 495–506. DOI: 10.7242/1999-6691/2022.15.4.38

Nigmatulin R.I.Dynamics of Multiphase Media. Vol. 1. New York: Hemisphere, 1991. 507 p.

Ding J.,Gidaspow D.A bubbling fluidization model using kinetic theory of granular flow. AIChE Journal. 1990. Vol. 36, no. 4. P. 523–538. DOI: 10.1002/aic.690360404

Shirvanian P.A.,Calo J.M.,Hradil G.Numerical simulation of fluid–particle hydrodynamics in a rectangular spouted vessel. International Journal of Multiphase Flow. 2006. Vol. 32, no. 6. P. 739–753. DOI: 10.1016/j.ijmultiphaseflow.2006.02.009

Chapman S.,Cowling T.G. TheMathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press, 1990. 423 p.

Gidaspow D.Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Elsevier Science, 1994. 467 p.

Goldhirsch I. Introduction to granular temperature. Powder Technology. 2008. Vol. 182, no. 2. P. 130–136. DOI: 10.1016/j.powtec.2007.12.002

Wang J.Continuum theory for dense gas-solid flow: A state-of-the-art review. Chemical Engineering Science. 2020. Vol. 215. 115428. DOI: 10.1016/j.ces.2019.115428

Lun C.K.K., Savage S.B., Jeffrey D.J.,Chepurniy N.Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. Journal of Fluid Mechanics. 1984. Vol. 140. P. 223–256. DOI: 10.1017/s0022112084000586

Saffman P.G. The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics. 1965. Vol. 22, no. 2. P. 385–400. DOI: 10.1017/s0022112065000824

Leenov D., Kolin A. Theory of Electromagnetophoresis. I. Magnetohydrodynamic Forces Experienced by Spherical and Symmetrically Oriented Cylindrical Particles. The Journal of Chemical Physics. 1954. Vol. 22, no. 4. P. 683–688. DOI: 10.1063/1.1740149

Zhang L.,Wang S.,Dong A.,Gao J.,Damoah L.N.W.Application of Electromagnetic (EM) Separation Technology to Metal Refining Processes: A Review. Metallurgical andMaterials Transactions B. 2014. Vol. 45, no. 6. P. 2153–2185. DOI: 10.1007/s11663-014-0123-y

Syamlal M.,O’Brien T.J. Simulation of granular layer inversion in liquid fluidized beds. International Journal of Multiphase Flow. 1988. Vol. 14, no. 4. P. 473–481. DOI: 10.1016/0301-9322(88)90023-7

Dallavalle J.M.Micromeritics: The Technology of Fine Particles. Pitman, 1948. 555 p.

Garside J., Al-Dibouni M.R. Velocity-Voidage Relationships for Fluidization and Sedimentation in Solid-Liquid Systems. Industrial & Engineering Chemistry Process Design and Development. 1977. Vol. 16, no. 2. P. 206–214. DOI: 10.1021/i260062a008

Dobosz A., Plevachuk Y., Sklyarchuk V., Sokoliuk B.,Gancarz T. Thermophysical properties of the liquid Ga–Sn–Zn eutectic alloy. Fluid Phase Equilibria. 2018. Vol. 465. P. 1–9. DOI: 10.1016/j.fluid.2018.03.001

Williams B.S.,Marteau D.,Gollub J.P.Mixing of a passive scalar in magnetically forced two-dimensional turbulence. Physics of Fluids. 1997. Vol. 9, no. 7. P. 2061–2080. DOI: 10.1063/1.869326

Published

2025-08-10

Issue

Section

Articles

How to Cite

Okatev, R. S., Losev, G. L., & Kolesnichenko, I. V. (2025). MHD-stirring of a heavy impurity under a rotating magnetic field generated by a multi-section inductor. Computational Continuum Mechanics, 18(2), 127-139. https://doi.org/10.7242/1999-6691/2025.18.2.10