Influence of a bimetallic shell and rotation on the interaction of a striker with a metal-ceramic semi-infinite barrier

Authors

DOI:

https://doi.org/10.7242/1999-6691/2025.18.1.3

Keywords:

striker, shell, core, ceramics, fracture, modeling, ricochet, crater depth

Abstract

The high-velocity impact of a striker, composed of a high-strength steel core, a lead filler and a brass shell, on metal-ceramic and monolithic metal barriers is numerically modelled. The metal-ceramic barrier is a two-layer structure, with the upper layer made of boron carbide (B4C) ceramics and the lower layer made of aluminum. The monolithic barrier consists entirely of aluminum. The interaction angles between the striker’s longitudinal axis and the normal to the barrier, ranging from 0 to 45 degrees, are considered. The influence of the bimetallic shell and the striker’s rotation around its longitudinal axis on its interaction with a barrier is investigated. The behavior of metallic materials and B4C ceramics is described using an elastic-plastic model. The fracture criterion for metallic materials is defined by a plastic strain limit. For ceramics, a deformation criterion is applied, considering both compressive and tensile strengths. The modeling is performed within a three-dimensional finite element framework using the EFES 2.0 software, which is capable of simulating body fragmentation, formation of new contact and free surfaces, and material erosion. The full-scale experimental data are in good agreement with the computational results, which confirms the adequacy of the mathematical model and numerical algorithm. The numerical method permits a parametric study of the influence of kinematic, geometric and structural factors on the interaction process. It is shown that the bimetallic shell and the striker’s rotation have a significant effect on its interaction with the metal-ceramic barrier.

Downloads

Download data is not yet available.
Supporting Agencies
The study was supported by the Tomsk State University Development Program (Priority 2030). The mathematical model and EFES software package were created within the framework of the state assignment of the Institute of Strength Physics and Materials Science SB RAS, project FWRW-2021-0002.

References

Iremonger M.J., Hazell P.J. Influence on small arms bullet construction on terminal ballistics. Proceedings of the 21st International Symposium on Ballistics / ed. by N. Burman, J. Anderson, G. Katselis. Adelaide, Australia, 2004b. P. 767–773.

Crouch I.G., Appleby-Thomas G., Hazell P.J. A study of the penetration behaviour of mild-steel-cored ammunition against boron carbide ceramic armours. International Journal of Impact Engineering. 2015b. Vol. 80. P. 203–211. DOI: 10.1016/j.ijimpeng.2015.03.002

Hazell P.J., Appleby-Thomas G.J., Philbey D., Tolman W. The effect of gilding jacket material on the penetration mechanics of a 7.62 mm armour-piercing projectile. International Journal of Impact Engineering. 2013b. Vol. 54. P. 11–18. DOI: 10.1016/j.ijimpeng.2012.10.013

Forrestal M.J., Børvik T., Warren T.L. Perforation of 7075-T651 Aluminum Armor Plates with 7.62 mm APM2 Bullets. Experimental Mechanics. 2010b. Vol. 50, no. 8. P. 1245–1251. DOI: 10.1007/S11340-009-9328-4

Roberts A., Appleby-Thomas G.J., Wood D.C., Hameed A., Crouch I.G. Dynamic jacket removal and the ’bullet’s journey’. Proceedings of the 29th International Symposium on Ballistics / ed. by C. Woodley, I. Cullis. Edinburgh, United Kingdom, 2016b. P. 2307–2315.

Gooch W.A., Burkins M.S., Kingman P., Hauver G., Netherwood P., Benck R. Dynamic X-ray imaging of 7.62-mm APM2 projectiles penetrating boron carbide. Proceedings of the 18th International Symposium on Ballistics. Vol. 2 / ed. by W. Reinicke. San Antonio, Texas, USA, 1999b. P. 901–908.

Rosenberg Z., Yeshurun Y., Tsaliah J. More on the thick-backing screening technique for ceramic tiles against AP projectiles. Proceedings of the 12th International Symposium on Ballistics. San Antonio, Texas: American Defense Preparedness Association, 1990b. P. 197–201.

Cosquer Y., Longère P., Pantalé O., Gailhac C. Experiment/simulation correlation-based methodology for metallic ballistic protection solutions. Defence Technology. 2023b. Vol. 29. P. 24–38. DOI: 10.1016/j.dt.2023.03.006

Binar T., Švarc J., Vyroubal P., Kazda T., Rolc S., Dvořák A. The comparison of numerical simulation of projectile interaction with transparent armour glass for buildings and vehicles. Engineering Failure Analysis. 2018b. Vol. 92. P. 121–139. DOI: 10.1016/j.engfailanal.2018.05.009

Fras T. On the effect of pitch and yaw angles in oblique impacts of small-caliber projectiles. Defence Technology. 2024b. Vol. 31. P. 73–94. DOI: 10.1016/j.dt.2023.06.004

Pavlovic A., Fragassa C. Investigating the resistance of reinforced barriers to high velocity projectiles. Engineering Structures. 2018b. Vol. 174. P. 384–395. DOI: 10.1016/j.engstruct.2018.07.074

Kraus A.E., Kraus E.I., Shabalin I.I. Impact resistance of ceramics in a numerical experiment. Journal of Applied Mechanics and Technical Physics. 2020b. Vol. 61, no. 5. P. 847–854. DOI: 10.1134/S002189442005020X

Holmquist T.J., Johnson G.R. Response of boron carbide subjected to high-velocity impact. International Journal of Impact Engineering. 2008b. Vol. 35. P. 742–752. DOI: 10.1016/j.ijimpeng.2007.08.003

Fernández-Fdz D., Zaera R., Fernández-Sáez J. A constitutive equation for ceramic materials used in lightweight armors. Computers & Structures. 2011b. Vol. 89, no. 23/24. P. 2316–2324. DOI: 10.1016/j.compstruc.2011.08.003

Grady D.E. Hugoniot equation of state and dynamic strength of boron carbide. Journal of Applied Physics. 2015b. Vol. 117. 165904. DOI: 10.1063/1.4918604

Molodets A.M., Golyshev A.A., Shakhrai D.V. Equations of state and melting curve of boron carbide in the high-pressure range of shock compression. Journal of Experimental and Theoretical Physics. 2017. Vol. 124, no. 3. P. 469–475. DOI: 10.1134/S1063776117030049

Savinykh A.S., Cherepanov I.A., Razorenov S.V., Ovsienko A.I., Rumyantsev V.I., Ordan’yan S.S. Evolution of Shock Waves in Hot-Pressed Ceramics of Boron Carbide and Silicon Carbide. Technical Physics. 2018. Vol. 63, no. 12. P. 1755–1761. DOI: 10.1134/S1063784218120186

Savinykh A.S., Garkushin G.V., Razorenov S.V., Rumyantsev V.I. Dynamic strength of reaction-sintered boron carbide ceramic. Technical Physics. 2015. Vol. 60, no. 6. P. 863–868. DOI: 10.1134/S1063784215060249

Krafft J.M. Surface Friction in Ballistic Penetration. Journal of Applied Physics. 1955b. Vol. 26, no. 10. P. 1248–1253. DOI: 10.1063/1.1721884

Goldsmith W. Non-ideal projectile impact on targets. International Journal of Impact Engineering. 1999b. Vol. 22. P. 95–395. DOI: 10.1016/s0734-743x(98)00031-1

Radchenko P.A., Batuev S.P., Radchenko A.V. Effect of Projectile Rotation on High-Velocity Impact Fracture. Physical Mesomechanics. 2022b. Vol. 25. P. 119–128. DOI: 10.1134/S1029959922020035

Radchenko P.A., Radchenko A.V., Batuev S.P. A numerical study of the high-velocity interaction of rotating strikers having different head shapes with a barrier of finite thickness. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika. 2024. No. 87. P. 120–134. DOI: 10.17223/19988621/87/10

Kanel’ G.I., Shcherban’ V.V. Plastic deformation and cleavage rupture of armco iron in a shock wave. Combustion, Explosion, and Shock Waves. 1980. Vol. 16. P. 439–446. DOI: 10.1007/BF00742994

Sedov L.I. Mekhanika sploshnoy sredy. Vol. 2. Moscow: Nauka, 1970. 568 p.

Moynihan T.J., Chou S.-C., Mihalcin A.L. Application of the Depth-of-Penetration Test Methodology to Characterize Ceramics for Personnel Protection. Army Research Laboratory. ARL-TR-2219. 2000b. 43 p.

Carton E.P., Johnsen B.B., Rahbek D.-B., Broos H., Snippe A. Round robin using the depth of penetration test method on an armour grade alumina. Defence Technology. 2019b. Vol. 15, no. 6. P. 829–836. DOI: 10.1016/j.dt.2019.07.014

Rosenberg Z., Bless S., Yeshurun Y., Okajima K. A new definition of ballistic efficiency of brittle materials based on the use of thick backing plates. Proceedings of the "IMPACT 87" Symposium. Impact loading and dynamic behavior of materials / ed. by C. Chiem, H.-D. Kunze, L. Meyer. DCM Informationsgesellschaft Verlag, 1988b. P. 491–498.

Rozenberg Z., Yeshurun Y. The relation between ballastic efficiency and compressive strength of ceramic tiles. International Journal of Impact Engineering. 1988b. Vol. 7, no. 3. P. 357–362. DOI: 10.1016/0734-743X(88)90035-8

Cui F., Wu G., Ma T., Li W. Effect of Ceramic Properties and Depth-of-penetration Test Parameters on the Ballistic Performance of Armour Ceramics . Defence Science Journal. 2017b. Vol. 67, no. 3. P. 260–268. DOI: 10.14429/DSJ.67.10664

Franzen R.R., Orphal D.L., Anderson C.E. The influence of experimental design on depth-of-penetration (DOP) test results and derived ballistic efficiencies. International Journal of Impact Engineering. 1997b. Vol. 19, no. 8. P. 727–737. DOI: 10.1016/S0734-743X(97)00010-9

Woodward R.L., Baxter B.J. Ballistic evaluation of ceramics: Influence of test conditions. International Journal of Impact Engineering. 1994b. Vol. 15, no. 2. P. 119–124. DOI: 10.1016/S0734-743X(05)80024-7

Rosenberg Z., Dekel E. Terminal Ballistics. Springer International Publishing, 2020b. 420 p.

Hazell P.J. Measuring the strength of brittle materials by depth-of-penetration testing. Advances in Applied Ceramics. 2010b. Vol. 109, no. 8. P. 504–510. DOI: 10.1179/174367610X12804792635387

Venkatesan J., Iqbal M.A., Madhu V. Ballistic Performance of Bilayer Alumina/Aluminium and Silicon Carbide/Aluminium Armours. Procedia Engineering. 2017b. Vol. 173. P. 671–678. DOI: 10.1016/j.proeng.2016.12.141

Corriveau D., Petre C.F. Influence of chamber misalignment on cased telescoped (CT) ammunition accuracy. Defence Technology. 2016b. Vol. 12, no. 2. P. 117–123. DOI: 10.1016/j.dt.2015.11.008

Published

2025-04-17

Issue

Section

Articles

How to Cite

Radchenko, P. A., Batuev, S. P., & Radchenko, A. V. (2025). Influence of a bimetallic shell and rotation on the interaction of a striker with a metal-ceramic semi-infinite barrier. Computational Continuum Mechanics, 18(1), 32-44. https://doi.org/10.7242/1999-6691/2025.18.1.3