Application of level set method for modeling of immiscible liquids with large surface tension
DOI:
https://doi.org/10.7242/1999-6691/2024.17.4.41Keywords:
level set method, immiscible liquids, numerical modeling, surface tension, finite volume methodAbstract
One of the most important advantages of the level set method is its ability to automatically handle topological changes. Instead of explicitly tracking the interface between the media, the level set method describes them as a zero isosurface of the level set function. This allows numerical modeling of the dynamics of a multiphase fluid as a single medium with varying parameters. It is known that a disadvantage of this approach is the possibility of non-physical oscillations of the velocity field near the interface, which occur at high surface forces due to the error in calculating the curvature of the interface and high gradients of other functions in the transition layer. Another disadvantage of the method is the problem of preserving the masses of liquids during the simulation. In this paper, several modifications of the level set method are described that allow reducing the mass loss of liquids, improving the convergence in the implicit solution of the transport equation, and reducing velocity oscillations near the interface in the case of high values of the surface tension coefficient. The proposed approaches were tested on a standard test problem of the dynamics of two immiscible liquids.
Downloads
References
Lyubimov D.V., Lyubimova T.P. One method for numerical modelling in the problems with deformable fluids interfaces. Modelling in Mechanics. 1990. Vol. 4, no. 21. P. 136-140.
Brackbill J.U., Kothe D.B., Zemach C. A continuum method for modeling surface tension. Journal of Computational Physics. 1992. Vol. 100, no. 2. P. 335-354. DOI: 10.1016/0021-9991(92)90240-Y
Sussman M., Smereka P., Osher S. A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow. Journal of Computational Physics. 1994. Vol. 114, no. l.P. 146-159. DOI: 10.1006/jcph.1994.1155
Sussman M., Fatemi E., Smereka P., Osher S. An improved level set method for incompressible two-phase flows. Computers & Fluids. 1998. Vol. 27, no. 5/6. P. 663-680. DOI: 10.1016/S0045-7930(97)00053-4
Lyubimov D.V., Lyubimova T.P., Ivantsov A.O., Cherepanova A.A. Implementation of the level set method for modeling the dynamics of systems with fluid interfaces. Computational Continuum Mechanics. 2008. Vol. 1, no. 2. P. 53-62. DOI: 10.7242/1999-6691/2008.1.2.15
Lalanne B., Villegas L.R., Tanguy S., Risso F. On the computation of viscous terms for incompressible two-phase flows with Level Set/Ghost Fluid Method. Journal of Computational Physics. 2015. Vol. 301. P. 289-307. DOI:|1Q. 1016/j.jcp.2015.08.036
Liu X.-D., Osher S., Chan T. Weighted Essentially Non-oscillatory Schemes. Journal of Computational Physics. 1994. Vol. 115, no. l. P. 200-212. DOI: 10.1006/jcph.1994.1187
Huang J., Carrica P.M., Stern F. Coupled ghost fluid/two-phase level set method for curvilinear body-fitted grids. International Journal for Numerical Methods in Fluids. 2007. Vol. 55, no. 9. P. 867-897. DOI: 10.1002/fld.1499
Gartner J.W., Kronenburg A., Martin T Efficient WENO library for OpenFOAM. SoftwareX. 2020. Vol. 12. 100611. DOI: 10.1016/j.sof tx.2020.100611
Ferro P., Landel P., Landrodie C., Guillot S., Pescheux M. Optimized reinitialization based level-set method within industrial context. 2024. arXiv: 2405.20958[physics.flu-dyn]. URL: https://arxiv.org/abs/2405.20958
Sussman M., Almgren A.S., Bell J.B., Colella P., Howell L.H., Welcome M.L. An Adaptive Level Set Approach for Incompressible Two-Phase Flows. Journal of Computational Physics. 1999. Vol. 148, no. 1.P.81-124. DOI: 10.1006/jcph.1998.6106
Fedkiw R.P., Aslam T., Xu S. The Ghost Fluid Method for Deflagration and Detonation Discontinuities. Journal of Computational Physics. 1999. Vol. 154, no. 2. P. 393-427. DOI:110.1006/jcph.1999.63201
Terashima H., Tryggvason G. A front-tracking/ghost-fluid method for fluid interfaces in compressible flows. Journal of Computational Physics. 2009. Vol. 228, no. 11. P. 4012-4037. DOI: 10.1016/j.jcp.2009.02.023
Liu W., Yuan L., Shu C.-W. A Conservative Modification to the Ghost Fluid Method for Compressible Multiphase Flows. Communications in Computational Physics. 2011. Vol. 10, no. 4. P. 785-806. DOI: 10.4208/cicp.201209.161010a
Vukcevic V., Jasak H., Gatin I. Implementation of the Ghost Fluid Method for free surface flows in polyhedral Finite Volume framework. Computers & Fluids. 2017. Vol. 153. P. 1-19. DOI: 10.1016/j.compfluid. 2017.05.003
Voroshilov E.S., Mosina R.M., Gruzd S.A., Ivantsov A. O., Khlybov O.A., Lyubimova TP, Krivilyov M.D. Capillary effects and consolidation kinetics during selective laser melting of 316L powder. Physics of Fluids. 2024. Vol. 36, no. 4. DOI: 10.1063/5.0195071
Zhang Y.-T., Shu C.-W. Chapter 5 - ENO and WENO Schemes. Handbook of Numerical Methods for Hyperbolic Problems. Vol. 17 / ed. by R. Abgrall, C.-W. Shu. Elsevier, 2016. P. 103-122. Handbook of Numerical Analysis. DOI: 110.1016/bsThna.2016.09.009
Demin V., Petukhov M., Shmyrov A., Shmyrova A. Nonlinear dynamics of the film of an insoluble surfactant during the relaxation to equilibrium. Interfacial Phenomena and Heat Transfer. 2020. Jan. Vol. 8. P. 261-271. DOI: 10.1615/InterfacPhenomHeatTransfer.2020035273
Popinet S., Zaleski S. A front-tracking algorithm for accurate representation of surface tension. International Journal for Numerical Methods in Fluids. 1999. Vol. 30, no. 6. P. 775-793. DOI: 10.1002/(SICI)1097-0363(19990730)30:6<775::AID-FLD864>3.0.C0;2-#
Talat N., Mavric B., Hatic V., Bajt S., Sarler B. Phase field simulation of Rayleigh-Taylor instability with a meshless method. Engineering Analysis with Boundary Elements. 2018. Vol. 87. P. 78-89. DOI: 10.1016/j.enganabound.12017.11.0151
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.