An axisymmetric problem of gas filtration in a poroelastic medium

Authors

DOI:

https://doi.org/10.7242/1999-6691/2024.17.4.40

Keywords:

porosity, poroelasticity, filtration, carbon dioxide gas, carbon dioxide, well, numerical solution, injection

Abstract

The formulation and solution of the problem of burying carbon dioxide (carbon dioxide) in a poroelastic medium are considered. The model is based on the equations describing the filtration of liquids or gases in deformable porous media, which are a generalization of Muskett Leverett's models of poroelastic media. The assumption that the speed of movement of the solid skeleton of the medium is small made it possible to reduce the system of constitutive equations to two equations so that the effective pressure and porosity can be found. The gas filtration area refers to a rock formation in which an injection well is located at depth, and, on the sides, the formation is confined by impermeable rocks. The top of the formation coincides with the Earth surface and is permeable. The migration of carbon dioxide and its release to the surface occurs due to an increase in porosity at the top of the formation. Based on these assumptions, boundary conditions for the velocities of the gas and solid phases are set and then rewritten in terms of the desired function of the effective pressure of the medium. The resulting initial boundary value problem is solved numerically using a scheme of alternating directions and the fourth-order Runge-Kutta method. A difference scheme and an algorithm for solving the problem are given. The orders of uniform convergence in spatial and temporal variables were determined, and an approximate estimate for the rate of convergence of the numerical solution was obtained. Numerical modeling of several options for injecting carbon dioxide into the formation at different well depths and with different injection rates was carried out. Optimal gas injection conditions for its long-term geological storage were determined.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено за счет гранта Российского научного фонда № 23-71-10045, https://rscf.ru/project/23-71-10045/

References

Furre A. -K., Eiken O., Aines H., Vevatne J.N., Kiatr A.F. 20 Years of Monitoring CO2-injection at Sleipner. Energy Procedia. 2017. Vol. 114. P. 3916-3926. DOI: 10.1016/j.egypro.2017.03.1523

Andreeva A.I., Afanasyev A.A. Comparison of the optimal water-alternating-gas injection strategies using 1-D and 2-D reservoir simulations. Computational Continuum Mechanics. 2022. Vol. 15, no. 2. P. 253-262. DOI: 10.7242/1999-6691/2022.15.3. 25

Afanasyev A.A., Melnik O.E., Tsvetkova YD. Modeling of flows in porous media related to underground carbon dioxide storage using high performance computing systems. Computational Continuum Mechanics. 2013. Vol. 6, no. 4. P. 420-429. DOI: 10.7242/1999-6691/2013.6.4.461

Kim K., Kundzicz PM., Makhnenko R.Y. Effect of CO2 Injection on the Multiphase Flow Properties of Reservoir Rock. Transport in Porous Media. 2023. Vol. 147, no. 2. P. 429-461. DOI: 10.1007/s11242-023-01916-6

Vafaie A., Cama J., Soler J.M., Kivi I.R., Vilarrasa V. Chemo-hydro-mechanical effects of CO2 injection on reservoir and seal rocks: A review on laboratory experiments. Renewable and Sustainable Energy Reviews. 2023. Vol. 178. 113270. DOI: 10.1016/j.rser.2023.113270

Anthony E., Vedanti N. 2D parallel simulation of seismic wave propagation in poroelastic media to monitor a CO2 geological sequestration process. Journal of African Earth Sciences. 2024. 105194. DOI: 10.1016/j.jafrearsci.2024.105194

Urych T, Checko J., Magdziarczyk M., Smolihski A. Numerical Simulations of Carbon Dioxide Storage in Selected Geological Structures in North-Western Poland. Frontiers in Energy Research. 2022. Vol. 10.827794. DOI: 10.3389/fenrg.2022.827794

Virts R.A., Papin A.A. Modelling the storage of carbon dioxide in viscoelastic porous medium. Computational Technologies. 2022. Vol. 27, no. 6. P. 4-18. DOI: 10.25743/ICT. 2022.27.6.002

Hidayat M.N., Kusuma J., Aris N. A Two-Dimensional Mathematical Model of Carbon Dioxide (CO2) Transport in Concrete Carbonation Processes. Jurnal Matematika, Statistika dan Komputasi. 2021. Vol. 17, no. 3. P. 405-417. DOI: 10.20956/j.v17i3.12227

Junji Yamaguchi A., Sato T., Tobase T, Wei X., Huang L., Zhang J., Rian J., Liu T.-Y. Multiscale numerical simulation of CO2 hydrate storage using machine learning. Fuel. 2023. Vol. 334. 126678. DOI: 10.1016/j.fuel.2022.126678

Virts R., Papin A. Problemy matematicheskogo modelirovaniya khraneniya uglekislogo gaza v geologicheskikh formatsiyakh. Barnaul: Altai State University, 2021. 70 p.

Connolly J.A.D., Podladchikov Y.Y. Compaction-driven fluid flow in viscoelastic rock. Geodinamica Acta. 1998. Vol. 11, no. 2/3. P. 55-84. DOI: 10.1080/09853111.1998.11105311

Mareschal J.-C. Mathematical Geoscience. Springer-Verlag London Limited, 2011. 883 p.

El-Amin M.F., Sun S., Salama A. Modeling and Simulation of Nanoparticle Transport in Multiphase Flows in Porous Media: CO2 Sequestration. SPE, 2012. P. 1-10. DOI: 10.2118/163089-MS

Bear J. Dynamics of Fluids in Porous Media. New York: American Elsevier Publishing Company, 1972. 764 p.

Morency C., Huismans R.S., Beaumont C., Fullsack P. A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability. Journal of Geophysical Research: Solid Earth. 2007. Vol. 112. B10. DOI: 10.1029/2006JB004701

Nigmatulin R. Dinamika mnogofaznykh sred. Moscow: Nauka, 1987.463 p.

Khasanov M.K., Rafikova G.R., Musakaev N.G. Mathematical Model of Carbon Dioxide Injection into a Porous Reservoir Saturated with Methane and Its Gas Hydrate. Energies. 2020. Vol. 13, no. 2. 440. DOI: 10.3390/enl3020440

Virts R.A., Papin A.A., Tokareva M.A. Non-isothermal filtration of a viscous compressible fluid in a viscoelastic porous medium. Journal of Physics: Conference Series. 2020. Vol. 1666, no. 1.012041. DOI: 10.1088/1742-6596/1666/1/012041

Papin A. A., Tokareva M.A., Virts R.A. Filtration of Liquid in a Non-isothermal Viscous Porous Medium. Journal of Siberian Federal University. Mathematics & Physics. 2020. Vol. 13, no. 6. P. 763-773. DOI: 10.17516/1997-1397-2020-13-6-763-773

Virts R.A., Papin A.A., Weigant VA. Numerical solution of the one-dimensional problem of filtration of an incompressible fluid in a viscous porous medium. Izvestiya of Altai State University. 2018. No. 4. P. 62-67. DOI: 10.14258/izvasu(2018)4-11

Sibin A.N., Sibin N.N. Numerical solution of one-dimensional problem of filtration with suffusion processes. Izvestiya of Altai State University. 2017. No. 1. P. 123-126. DOI: 10.14258/izvasu(2017) 1-24

Tokareva M.A. Solvability of initial boundary value problem for the equations of filtration in poroelastic media. Journal of Physics: Conference Series. 2016. Vol. 722, no. 1.012037. DOI: 10.1088/1742-6596/722/1/012037

Tokareva M.A., Papin A.A. Global Solvability of a System of Equations of One-Dimensional Motion of a Viscous Fluid in a Deformable Viscous Porous Medium. Journal of Applied and Industrial Mathematics. 2019. Vol. 13. P. 350-362. DOI: 10.1134/S1990478919020169

Papin A.A., Tokareva M.A. On Local Solvability of the System of the Equations of One Dimensional Motion of Magma. Journal of Siberian Federal University. Mathematics & Physics. 2017. Vol. 10, no. 3. P. 385-395. DOI: 10.17516/1997-1397-2017-10-3-385-395

Terzaghi K. Theoretical soil mechanics. Wiley, 1943. 528 p. DOI: 10.1002/9780470172766.fmatter

Samarskiy A. Teoriya raznostnykh skhem. Moscow: Nauka, 1977. 656 p.

Kalitkin N. Chislennye metody. Moscow: Nauka, 1986. 512 p.

Pershin E., Arutyunyan A. Experimental evaluation of the order of uniform convergence for special difference schemes. Mathematical Models and Computer Simulations. 1995. Vol. 7, no. 6. P. 85-94.

Khakimzyanov G., Chernyy S. Metody vychisleniy. Ch. 3. Chislennye metody resheniya zadach dlya uravneniy parabolicheskogo i ellipticheskogo tipa. Novosibirsk: Novosibirsk State University, 2007. 160 p.

Petrukhin E., Arutyunyan A. Technical feature of the bore holes and equipment for undertaking of hydrodynamic studies. Science. Engineering. Technologies (Polytechnic Bulletin). 2015. No. 2. P. 73-83.

Shamshev F.A. Tekhnologiya i tekhnika buroviykh rabot. Moscow: Nedra, 1973.494 p.

Published

2025-01-13

Issue

Section

Articles

How to Cite

Virts, R. A. (2025). An axisymmetric problem of gas filtration in a poroelastic medium. Computational Continuum Mechanics, 17(4), 496-508. https://doi.org/10.7242/1999-6691/2024.17.4.40