The effect of geometric parameters on the propagation of SH waves in a piezoelectric/piezomagnetic plate

Authors

DOI:

https://doi.org/10.7242/1999-6691/2024.17.4.38

Keywords:

piezoelectric material, piezomagnetic material, magnetoelectroelastic material, shear horizontally polarized surface acoustic waves, electromagnetomechanical coupling coefficient

Abstract

The propagation features of horizontally polarized shear waves in a magnetoelectroelastic composite plate in contact with vacuum are investigated within the quasi-static approximation. The plate consists of rigidly coupled piezoelectric and piezomagnetic layers. It is assumed that there are no mechanical stresses on the outer surfaces, and the magnetic potential is zero. Depending on the nature of the specified electrical conditions, problems with electrically open and electrically closed external surfaces are considered. The wave process is initiated by the action of a remote source of harmonic oscillations and is assumed to be steady. The solution of the problems is constructed in Fourier images as an expansion into a set of exponentials. Dispersion equations of the problems, which are presented in a matrix form convenient for numerical implementation, were obtained. Using the example of the PZT-5H/CoFe2O4 plate, the effect of the thickness of each of its layers on the transformation features of phase and group velocities of surface acoustic waves with horizontal polarization (SH-SAW) is established. When changing the geometric parameters, either the plate thickness or the thickness of one of its layers was fixed. Within the framework of the problem with electrically closed external surfaces, significant differences in the behavior of velocities were established depending on the thickness of the piezoelectric and piezomagnetic layers. The conditions for the maximum and minimum effect of the thickness of each layer on the behavior of the 2nd and subsequent SH-SAW modes were determined. It is shown that in the presence of a very thin piezomagnetic layer in the plate, the behavior of the 2nd SAW mode changes significantly: both the mode output frequency and the asymptotic value of the velocity increase. The regularities of the effect of changing the thickness of the piezoelectric and piezomagnetic layers of the plate on the transformation of the electromagnetic-mechanical coupling coefficient in a wide frequency range were revealed. The obtained results are given in dimensionless parameters and can be of interest in the development of new functionally oriented materials, the assessment of their performance characteristics, as well as in the creation of highly efficient devices operating on surface acoustic waves.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено при финансовой поддержке гранта Российского научного фонда (проект №~24-29-00773).

References

BleusteinJ.L. A new surface wave in piezoelectric materials. Applied Physics Letters. 1968. Vol. 13. P. 412-413. DOI: 10.1063/1.1652495

Gulyaev Y.V. Electroacoustic surface waves in solids. Journal of Experimental and Theoretical Physics Letters. 1969. Vol. 9. P. 37-38.

Matthews H. Surface wave filters: design, construction and use. New York: Wiley, 1977. 521 p.

Alshits V.I., Darinskii A.N., Lathe J. On the existence of surface waves in half-infinite anisotropic elastic media with piezoelectric and piezomagnetic properties. Wave Motion. 1992. Vol. 16. P. 265-283. DOI: 10.1016/0165-2125(92)90033-X

Mangin G. Continuum Mechanics of Electromagnetic Solids. North Holland, 1988. 598 p.

Gulyaev Y.V. Review of shear surface acoustic waves in solids. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 1998. Vol. 45, no. 4. P. 935-938. DOI: 10.1109/58.710563

Vinyas M. Computational Analysis of Smart Magneto-Electro-Elastic Materials and Structures: Review and Classification. Archives of Computational Methods in Engineering. 2021. Vol. 28, no. 3. P. 1205-1248. DOI: 10.1007/sll831-020-09406-4

Wang H., Wu B., Gao X., Liu Y., Li X., Liu X. Ultrasonic Guided Wave Defect Detection Method for Tank Bottom Plate Based on ShO Mode Multichannel Magnetostrictive Sensor. Measurement. 2023. Vol. 223. 113790. DOI: 10.2139/ssrn.4515168

Pan E. Three-dimensional Green’s functions in anisotropic magneto-electro-elastic bimaterials. Zeitschrift fur angewandte Mathematik und Physik. 2002. Vol. 53. P. 815-838. DOI: 10.1007/s00033-002-8184-1

Chen J., Pan E., Chen H. Wave propagation in magneto-electro-elastic multi layered plates. International Journal of Solids and Structures. 2007. Vol. 44, no. 3/4. P. 1073-1085. DOI: 10.1016/j.ijsolstr.2006.06.003

Wei W.-Y., Liu J.-X., Fang D.-N. Existence of Shear Horizontal Surface Waves in a Magneto-Electro-Elastic Material. Chinese Physics Letters. 2009. Vol. 26, no. 10. 104301. DOI: 10.1088/0256-307x/26/10/104301

Bou Matar O., Gasmi N., Zhou FL, Goueygou M., Taibi A. Legendre and Laguerre polynomial approach for modeling of wave propagation in layered magneto-electro-elastic media. The Journal of the Acoustical Society of America. 2013. Vol. 133, no. 3. P. 1415-1424. DOI: 10.1121/1.4776198

Othmani C., Zhang H., Lii C., Qing Wang Y., Reza Kamali A. Orthogonal polynomial methods for modeling elastodynamic wave propagation in elastic, piezoelectric and magneto-electro-elastic composites—A review. Composite Structures. 2022. Vol. 286. 115245. DOI: 10.1016/j.compstruct.2022.115245

Dziatkiewicz. G. New forms of the fundamental solutions for 3D magnetoelectroelasticity equations. Applied Mathematical Modelling. 2021. Vol. 91. P. 563-580. DOI: 10.1016/j.apm.2020.09.052

Melkumyan A. Twelve shear surface waves guided by clamped/free boundaries in magneto-electro-elastic materials. International Journal of Solids and Structures. 2007. Vol. 44. P. 3594-3599. DOI: 10.1016/j.ijsolstr.2006.09.016

Mai Y.-W., Niraula O.P., Wang B.L. A horizontal shear surface wave in magnetoelectroelastic materials. Philosophical Magazine Letters. 2007. Vol. 87. P. 53-58. DOI: 10.1080/09500830601096908

Liu J.-x., Fang D.-N., Wei W.-Y., Zhao X.-F. Love waves in layered piezoelectric/piezomagnetic structures. Journal of Sound and Vibration. 2008. Vol. 315. P. 146-156. DOI: 10.1016/j.jsv.2008.01.055

Zakharenko A.A. Analytical Investigation of Surface Wave Characteristics of Piezoelectromagnetics of Class 6 mm. ISRN Applied Mathematics. 201 l. P. 1-8. DOI: 10.5402/2011/408529

Zakharenko A. A. Consideration of SH-wave fundamental modes in piezoelectromagnetic plate: electrically open and magnetically open boundary conditions. Waves in Random and Complex Media. 2013. Vol. 23, no. 4. P. 373-382. DOI: 10.1080/17455030.2013.834396

Zakharenko A.A. Investigation of SH-Wave Fundamental Modes in Piezoelectromagnetic Plate: Electrically Closed and Magnetically Closed Boundary Conditions. Open Journal of Acoustics. 2014. Vol. 4. P. 90-97. DOI: 10.4236/oja.2014.42009

Calas H., Otero J.A., Rodriguez-Ramos R., Monsivais G., Stern C. Dispersion relations for SH wave in magneto-electro-elastic heterostructures. International Journal of Solids and Structures. 2008. Vol. 45. P. 5356-5367. DOI: 10.1016/j.ijsolstr.2008.05.017

Ezzin H., Amor M.B., Ghozlen M.H.B. Propagation behavior of SH waves in layered piezoelectric/piezomagnetic plates. Acta Mechanica. 2017. Vol. 228. P. 1071-1081. DOI: 10.1007/s00707-016-1744-9

Li L., Wei P.J. The piezoelectric and piezomagnetic effect on the surface wave velocity of magneto-electro-elastic solids. Journal of Sound and Vibration. 2014. Vol. 333, no. 8. P. 2312-2326. DOI: 10.1016/j.jsv.2013.12.005

Nie G., An Z., Liu J. SH-guided waves in layered piezoelectric/piezomagnetic plates. Progress in Natural Science. 2009. Vol. 19, no. 7. P. 811-816. DOI: 10.1016/j.pnsc.2008.10.007

Nie G., Liu J., Fang X., An Z. Shear horizontal (SH) waves propagating in piezoelectric-piezomagnetic bilayer system with an imperfect interface. Acta Mechanica. 2012. Vol. 223, no. 9. P. 1999-2009. DOI: 10.1007/s00707-012-0680-6

Wei FL-X., Li Y.-D., Xiong T, Guan Y. Propagation of SH waves in a piezoelectric/piezomagnetic plate: Effects of interfacial imperfection couplings and the related physical mechanisms. Physics Letters A. 2016. Vol. 380, no. 38. P. 3013-3021. DOI: 10.1016/j.physleta.2016.07

Pang Y., Feng W., Liu J., Zhang C. SH wave propagation in a piezoelectric/piezomagnetic plate with an imperfect magnetoelectroelastic interface. Waves in Random and Complex Media. 2019. Vol. 29, no. 3. P. 580-594. DOI: 10.1080/17455030.2018.1539277

Belyankova T.I., Vorovich E.I., Turchin A.S. SH-waves on the surface of a bimorph magnetoelectroelastic plate. Science in the South of Russia. 2024. Vol. 20, no. 2. P. 3-15. DOI: 10.7868/S25000640240201

Grinchenko V.T., Meleshko M.M. Garmonicheskiye kolebaniyai volny v uprugikh telakh. Kyiv: Naukova dumka, 1981. 284 p.

Alshits V.I., Maugin G.A. Dynamics of multilayers: elastic waves in an anisotropic graded or stratified plate. Wave Motion. 2005. Vol. 41, no. 4. P. 357-394. DOI: 10.1016/j.wavemoti.2004.09.002

Shuvalov A.L., Poncelet O., Kiselev A.P. Shear horizontal waves in transversely inhomogeneous plates. Wave Motion. 2008. Vol. 45, no. 5. P. 605-615. DOI: 10.1016/j.wavemoti.2007.07.008

Published

2025-01-13

Issue

Section

Articles

How to Cite

Belyankova, T. I., & Vorovich, Y. I. (2025). The effect of geometric parameters on the propagation of SH waves in a piezoelectric/piezomagnetic plate. Computational Continuum Mechanics, 17(4), 470-485. https://doi.org/10.7242/1999-6691/2024.17.4.38