Numerical simulation of the eruption of the volcano Etna using a depth-averaged lava flow model

Authors

DOI:

https://doi.org/10.7242/1999-6691/2024.17.3.30

Keywords:

viscous fluid, thermally conductive fluid, Bingham fluid, nonlinear rheology, crystallization, numerical modeling, volcanic eruptions, lava flows, Etna volcano

Abstract

Volcanic eruptions and accompanied lava flows pose a significant threat to population, buildings and regional infrastructure. Lava may occupy large spatial domains, for which a detailed three-dimensional modeling of its flow is reduced to solving discrete problems of high dimensionality and is not always effective. For sufficiently small ratio of the vertical dimension of the flow to its horizontal dimension, the mathematical models which are based on the depth-averaged equations of motion of a viscous medium are used. In this study, such a model consists of equations for lava thickness, two-dimensional equations of its motion, crystal growth kinetic equations and a heat balance equation that takes into account nonlinear convective and radiative energy exchange with the external environment, dissipation energy and latent heat of crystallization. The mathematical model was implemented numerically in the open-source package OpenFOAM. This package makes it possible to use modern high-performance computing clusters for conducting numerical experiments and to adapt the problem to specific physical aspects of the simulated natural process. The codes were verified by comparing the analytical solution of the problem and the solution obtained in terms of the model involving equations of motion of a two-phase incompressible fluid in spatial domain. The effect of the rheological characteristics of the flow represented by the Newtonian model was studied in comparison with the flow simulated using the Bingham model and the nonlinear Herschel–Bulkley model. The nonlinear rheology of the fluid of interest accounts for the dependence of the actual viscosity of a lava flow on temperature, shear rate, and yield stress (the yield stress and the flow behavior index are the functions of temperature). Parallel computer codes were implemented on the basis of OpenMPI for the computing clusters with shared and distributed memory running in Linux OS. Profiling of codes for multi-core CPUs with shared memory was carried out.

Downloads

Download data is not yet available.

References

Griffiths R.W. The Dynamics of Lava Flows. Annual Review of Fluid Mechanics. 2000. Vol. 32. P. 477–518. DOI: 10.1146/annurev.fluid.32.1.477

Tsepelev I., Ismail-Zadeh A., Melnik O. Lava dome morphology inferred from numerical modelling. Geophysical Journal International. 2020. Vol. 223, no. 3. P. 1597–1609. DOI: 10.1093/gji/ggaa395

Costa A., Caricchi L., Bagdassarov N. A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochemistry, Geophysics, Geosystems. 2009. Vol. 10, no. 3. Q03010. DOI: 10.1029/2008GC002138

WilkinsonW.L. Non-Newtonian Fluids. London: Pergamon Press, 1960. 138 p.

Huang X., Garcia M.H. A Herschel–Bulkley model for mud flow down a slope. Journal of Fluid Mechanics. 1998. Vol. 374. P. 305–333. DOI: 10.1017/S0022112098002845

Ismail-Zadeh A., Takeuchi K. Preventive disaster management of extreme natural events. Natural Hazards. 2007. Vol. 42, no. 3. P. 459–467. DOI: 10.1007/s11069-006-9075-0

Costa A., Macedonio G. Numerical simulation of lava flows based on depth-averaged equations. Geophysical Research Letters. 2005. Vol. 32. L05304. DOI: 10.1029/2004GL021817

Cordonnier B., Lev E., Garel F. Benchmarking lava-flow models. Geological Society, London, Special Publications. 2016. Vol. 426, no. 1. P. 425–445. DOI: 10.1144/SP426.7

Biagioli E., de’ Michieli Vitturi M., Di Benedetto F., Polacci M. Benchmarking a new 2.5D shallow water model for lava flows. Journal of Volcanology and Geothermal Research. 2023. Vol. 444. 107935. DOI: 10.1016/j.jvolgeores.2023.107935

De’ Michieli Vitturi M., Tarquini S. MrLavaLoba: A new probabilistic model for the simulation of lava flows as a settling process. Journal of Volcanology and Geothermal Research. 2018. Vol. 349. P. 323–334. DOI: 10.1016/j.jvolgeores.2017.11.016

Cappello A., Hйrault A., Bilotta G., Ganci G., Del Negro C. MAGFLOW: a physics-based model for the dynamics of lava-flow emplacement. 2016. DOI: 10.1144/SP426.16

Tsepelev I.A., Ismail-Zadeh A.T., Melnik O.E. 3D Numerical Modeling of the Summit Lake Lava Flow, Yellowstone, USA. Izvestiya, Physics of the Solid Earth. 2021. Vol. 57, no. 2. P. 257–265. DOI: 10.1134/S1069351321020129

Brogi F., Colucci S., Matrone J., Montagna C.P., De’ Michieli Vitturi M., Papale P. MagmaFOAM-1.0: a modular framework for the simulation of magmatic systems. Geoscientific Model Development. 2022. Vol. 15. P. 3773–3796. DOI: 10.5194/gmd-15-3773-2022

Hйrault A., Bilotta G., Vicari A., Rustico E., Negro C.D. Numerical simulation of lava flow using a GPU SPH model. Annals of Geophysics. 2011. Vol. 54, no. 5. DOI: 10.4401/ag-5343

Kelfoun K., Druitt T.H. Numerical modeling of the emplacement of Socompa rock avalanche, Chile. Journal of Geophysical Research: Solid Earth. 2005. Vol. 110. B12202. DOI: 10.1029/2005JB003758

Xia X., Liang Q. A new depth-averaged model for flow-like landslides over complex terrains with curvatures and steep slopes. Engineering Geology. 2018. Vol. 234. P. 174–191. DOI: 10.1016/j.enggeo.2018.01.011

Ferrari S., Saleri F. A new two-dimensional ShallowWater model including pressure effects and slow varying bottom topography. ESAIM: Mathematical Modelling and Numerical Analysis. 2004. Vol. 38. P. 211–234. DOI: 10.1051/m2an:2004010

Keszthelyi L., Self S. Some physical requirements for the emplacement of long basaltic lava flows. Journal of Geophysical Research: Solid Earth. 1998. Vol. 103, B11. P. 27447–27464. DOI: 10.1029/98JB00606

Tsepelev I., Ismail-Zadeh A., Starodubtseva Y., Korotkii A., Melnik O. Crust development inferred from numerical models of lava flow and its surface thermal measurements. Annals of Geophysics. 2019. Vol. 61, no. 2. Art 226. DOI: 10.4401/ag-7745

Neri A. A local heat transfer analysis of lava cooling in the atmosphere: application to thermal diffusion-dominated lava flows. Journal of Volcanology and Geothermal Research. 1998. Vol. 81. P. 215–243. DOI: 10.1016/S0377-0273(98)00010-9

Rogic N., Bilotta G., Ganci G., Thompson J.O., Cappello A., Rymer H., Ramsey M.S., Ferrucci F. The Impact of Dynamic Emissivity–Temperature Trends on Spaceborne Data: Applications to the 2001 Mount Etna Eruption. Remote Sensing. 2022. Vol. 14. 1641. DOI: 10.3390/rs14071641

Cappello A., Bilotta G., Ganci G. Modeling of Geophysical Flows through GPUFLOW. Applied Sciences. 2022. Vol. 12. 4395. DOI: 10.3390/app12094395

Moore G., Carmichael I.S.E. The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contributions to Mineralogy and Petrology. 1998. Vol. 130. P. 304–319. DOI: 10.1007/s004100050367

Tsepelev I.A., Ismail-Zadeh A.T., Melnik O.E. Lava Dome Evolution at Volcбn de Colima, Mйxico During 2013: Insights from Numerical Modeling. Journal of Volcanology and Seismology. 2021. Vol. 15, no. 6. P. 491–501. DOI: 10.1134/S0742046321060117

Giordano D., Dingwell D. Viscosity of hydrous Etna basalt: Implications for Plinian-style basaltic eruptions. Bulletin of Volcanology. 2003. Vol. 65, no. 1. P. 8–14. DOI: 10.1007/s00445-002-0233-2

Ishihara K., Iguchi M., Kamo K. Numerical Simulation of Lava Flows on Some Volcanoes in Japan. Lava Flows and Domes. Vol. 2 / ed. by J. Fink. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. DOI: 10.1007/978-3-642-74379-5_8

ChevrelM.O., PlatzT., Hauber E., Baratoux D., LavallйeY., Dingwell D.B. Lavaflow rheology: A comparison of morphological and petrological methods. Earth and Planetary Science Letters. 2013. Vol. 384. P. 109–120. DOI: 10.1016/j.epsl.2013.09.022

Filippucci M., Tallarico A., Dragoni M. Viscous dissipation in a flow with power law, temperature-dependent rheology: Application to channeled lava flows. Journal of Geophysical Research: Solid Earth. 2017. Vol. 122. P. 3364–3378. DOI: 10.1002/2016JB013720

Huppert H.E. The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. Journal of Fluid Mechanics. 1982. Vol. 121. P. 43–58. DOI: 10.1017/S0022112082001797

Korotkiy A.I., Tsepelev I.A. Numerical simulation of lava flows in models of isothermal viscous multiphase incompressible fluid. International Research Journal. 2021. No. 12. P. 12–18. DOI: 10.23670/IRJ.2021.114.12.001

Ganci G., Cappello A., Bilotta G., Corradino C., Del Negro C. Satellite-Based Reconstruction of the Volcanic Deposits during the December 2015 Etna Eruption. Data. 2019. Vol. 4, no. 3. P. 120. DOI: 10.3390/data4030120

Patankar S. Numerical Heat Transfer and Fluid Flow. CRC Press, 1980. 214 p. DOI: 10.1201/9781482234213

LeVeque R. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002. 558 p.

Ayachit U. The ParaView Guide: A Parallel Visualization Application. Kitware, Inc., 2015. 276 p.

Wang Y., Hutter K. Comparisons of numerical methods with respect to convectively dominated problems. International Journal for Numerical Methods in Fluids. 2001. Vol. 37. P. 721–745. DOI: 10.1002/fld.197

Van der Vorst H.A. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing. 1992. Vol. 13, no. 2. P. 631–644. DOI: 10.1137/0913035

Published

2024-10-24

Issue

Section

Articles

How to Cite

Korotkii, A. I., & Tsepelev, I. A. (2024). Numerical simulation of the eruption of the volcano Etna using a depth-averaged lava flow model. Computational Continuum Mechanics, 17(3), 362-375. https://doi.org/10.7242/1999-6691/2024.17.3.30