Simulation of airflow in the elastic deformable porous medium approximating human lungs: implementation algorithm and analysis of the results of model application
DOI:
https://doi.org/10.7242/1999-6691/2024.17.3.28Abstract
The work is devoted to the implementation of the mathematical model of the human respiratory system developed by the authors to predict the occurrence of respiratory pathologies caused by the negative effects of atmospheric air pollution. The proposed model describes human lungs as an elastically deformable saturated two-phase porous medium with large displacement gradients. Since the analytical solution of the formulated essentially nonlinear problem seems unfeasible, it is suggested that the solution can be obtained by applying numerical methods with step-by-step procedures. An algorithm is proposed for solving the related problem of air filtration in an elastic deformable porous medium. The nonlinear sub-problem of deformation of a two-phase lung medium is solved numerically by finite element method, and the filtration subproblem — by finite volume method. A set of programs was developed (in the C++ programming language) using parallel computing technologies to implement the algorithm. Based on the tomographic images of the lungs obtained with the ITK-SNAP software package, the three-dimensional shape of the lungs was reconstructed. Using the engineering software ANSYS ICEM CFD, a volumetric finite element mesh was constructed. Numerical modeling of air flow in the human lungs was performed for personalized three-dimensional geometry. The pressure fields of the gas phase in the human lungs at various moments of the respiratory cycle are presented. The developed model is planned to be used in the future to determine the areas of risk of respiratory pathologies caused by the negative impact of aerogenic environmental factors.
Downloads
References
Rakitskii V.N., Avaliani S.L., Novikov S.M., Shashina T.A., Dodina N.S., Kislitsin V.A. Health risk analysis related to exposure to ambient air contamination as a component in the strategy aimed at reducing global non-infectious epidemics. Health Risk Analysis. 2019. No. 4. P. 30–36. DOI: 10.21668/health.risk/2019.4.03.eng
Grzywa-Celińska A., Krusiński A., Milanowski J. ‘Smoging kills’ – Effects of air pollution on human respiratory system. Annals of Agricultural and Environmental Medicine. 2020. Vol. 27. P. 1–5. DOI: 10.26444/aaem/110477
Milanowski J. WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva: World Health Organization, 2021. URL: https://pubmed.ncbi.nlm.nih.gov/34662007/ (accessed: 23.9.2024)
Grebenev A.L. Propedevtika vnutrennikh bolezney. Moscow: Meditsina, 2001. 592 p.
Shklyar B.S. Diagnostika vnutrennikh bolezney. Kiev: Vysshaya shkola, 1972. 646 p.
Trusov P.V., Zaitseva N.V., Tsinker M.Y. Modeling of human breath: conceptual and mathematical statements. Mathematical Biology and Bioinformatics. 2016. Vol. 11, no. 1. P. 64–80. DOI: 10.17537/2016.11.64
Rahimi-Gorji M., Pourmehran O., Gorji-Bandpy M., Gorji T.B. CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways. Journal of Molecular Liquids. 2015. Vol. 209. P. 121–133. DOI: 10.1016/j.molliq.2015.05.031
RahmanM., ZhaoM., Islam M.S., Dong K., Saha S.C. Numerical study of nano and micro pollutant particle transport and deposition in realistic human lung airways. Powder Technology. 2022. Vol. 402. 117364. DOI: 10.1016/j.powtec.2022.117364
Anatomiya cheloveka. Vol. 1 / ed. by M. Sapin. Moscow: Medicina, 1993. 544 p.
DeGroot C.T. Numerical Modelling of Transport in Complex Porous Media: Metal Foams to the Human Lung. 2012. URL: https://ir.lib.uwo.ca/etd/655 (accessed: 23.9.2024)
DeGroot C.T., Straatman A.G. A Conjugate Fluid–Porous Approach for Simulating Airflow in Realistic Geometric Representations of the Human Respiratory System. Journal of Biomechanical Engineering. 2016. Vol. 138, no. 3. 4032113. DOI: 10.1115/1.4032113
Trusov P.V., Zaitseva N.V., Tsinker M.Y. On modeling of airflow in human lungs: constitutive relations to describe deformation of porous medium. PNRPU Mechanics Bulletin. 2020. No. 4. P. 165–174. DOI: 10.15593/perm.mech/2020.4.14
Trusov P.V., Zaitseva N.V., Tsinker M.Y., Nurislamov V.V. Simulation of airflow in an elastic-deformable porous medium approximating human lungs: structure, basic equations and resolution relations of the model. Computional continuum mechanics. 2024. Vol. 17, no. 2. P. 219–231. DOI: 10.7242/1999-6691/2024.17.2.20
Leybenzon L.S. Dvizheniye zhidkostey i gazov v poristoy srede. Moscow-Leningrad: Gostekhizdat, 1947. 244 p.
Barenblatt G.I., Yentov V.M., Ryzhik V.M. Teoriya nestatsionarnoy fil’tratsii zhidkosti i gaza. Moscow: Nedra, 1972. 288 p.
Trusov P.V., Zaitseva N.V., Tsinker M.Y., Nekrasova A.V. Mathematical Model of Airflow and Solid Particles Transport in The HumanNasalCavity. Mathematical Biology and Bioinformatics. 2021.Vol. 16, no. 2.P. 349–366. DOI: 10.17537/2021.16.349
Trusov P.V., Zaitseva N.V., Tsinker M.Y., Kuchukov A.I. Numeric Investigation of Non-Stationary Dust-Containing Airflow and Deposition of Dust Particles in the Lower Airways. Mathematical Biology and Bioinformatics. 2023. Vol. 18, no. 2. P. 347–366. DOI: 10.17537/2023.18.347
Zienkiewicz O.C. The Finite Element Method in Engineering Science. McGraw-Hill, 1971. 521 p.
Jasak H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows: Thesis submitted for the Degree of Doctor of Philosophy of the University of London and Diploma of Imperial College. London, 1996
Moraes A., Lage P., Cunha G., da Silva L.F.R. Analysis of the non-orthogonality correction of finite volume discretization on unstructured meshes. Proc. of the 22nd International Congress of Mechanical Engineering. COBEM 2013. Ribeirгo Preto, SP, Brazil, 2013. P. 3519–3530.
Tsinker M.Y. Fundamental and applied aspects of population health risk analysis. 11-15 October 2021, Perm, Perm National Research Polytechnical University. 2021. P. 372–375.
VIA/I-ELCAP Public Access Research Database. URL: http://www.via.cornell.edu/databases/lungdb.html
(accessed: 23.9.2024) 23. Yushkevich P.A., Piven J., Hazlett H.C., Smith R.G., Ho S., Gee J.C., Gerig G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage. 2006. Vol. 31. P. 1116–1128. DOI: 10.1016/j.neuroimage.2006.01.015
Klauchek S.V., Lifanova E.V. Fiziologiya dykhaniya. Volgograd: Volgograd State Medical University, 2005. 88 p.
Mikhaylova N.L., Gening T.P., Dolgova D.R. Fiziologiya dykhaniya. Ulyanovsk, 2015. 69 p.
Werner R., Ehrhardt J., Schmidt R., Handels H. Patient-specific finite element modeling of respiratory lung motion using 4D CT image data. Medical Physics. 2009. Vol. 36, no. 5. P. 1500–1511. DOI: 10.1118/1.3101820
Ehrhardt J., Werner R., Schmidt-Richberg A., Handels H. Statistical Modeling of 4D Respiratory Lung Motion Using Diffeomorphic Image Registration. IEEE transactions on medical imaging. 2011. Vol. 30, no. 2. DOI: 10.1109/TMI.2010.207629
Werner R. Biophysical Modeling of Respiratory Organ Motion. 4D Modeling and Estimation of Respiratory Motion for Radiation Therapy / ed. by J. Ehrhardt, C. Lorenz. Springer Berlin, Heidelberg, 2013. P. 61–84. DOI: 10.1007/978-3-642-36441-9_4
Chen D., Xie H., Gu L., Liu J., Tian L. Generation of a local lung respiratory motion model using a weighted sparse algorithm and motion prior-based registration. Computers in Biology and Medicine. 2020. Vol. 123. 103913. DOI: 10.1016/j.compbiomed.2020.103913
Roman’kov L.V. Tezisy lektsiy po propedevtike vnutrennikh bolezney. Gomel: Gomel State Medical University, 2008. 172 p.
Mayev I.V., Shestakov V.A., Lyakhova T.M., Busarova G.A., Ponomarenko V.B., Goncharenko A.Y., Lebedeva E.G. Propedevtika vnutrennikh bolezney. Vol. 1. Moscow: Akademiya, 2012. 352 p.
Kushwaha N., Kalpesh S., Parmar L.D. A study of chest expansion measurement in healthy adults with two different instructions. International Journal of Scientific Research. 2018. Vol. 7, no. 8. P. 42–44.
Pasport. Samokontrol’ urovnya zdorov’ya (fizicheskoye sostoyaniye, psikhologicheskoye sostoyaniye, otnosheniye k svoyemu zdorov’yu). Saratov, 0048. URL: https://www.nsmu.ru/socium/student_government/%D0%9F%D1%80%D0%B8%D0%BB%D0%BE%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5%2016.pdf
West J.B. Respiratory Physiology: The Essentials.Williams &Wilkins, 1985. 183 p.
Lindenbraten L.D. Luchevaya diagnostika porazheniy diafragmy (kratkiy ocherk). Radiology—practice. 2001. No. 2. P. 6–21.
Kolбř P., Neuwirth J., Šanda J., Suchбnek V., Svatб Z., Volejnнk J., Pivec M. Analysis of diaphragm movement, during tidal breathing and during its activation while breath holding, using MRI synchronized with spirometry. Physiological Research. 2009. P. 383–392. DOI: 10.33549/physiolres.931376
Bazylev V.V., Paramonova T.I., Vdovkin A.V. Analysis of the position and mobility of the diaphragm in adults with normal lung function before and after cardiac surgery. Diagnostic radiology and radiotherapy. 2017. Vol. 1. P. 53–63. DOI: 10.22328/2079-5343-2017-1-53-63
Nakao M., Nakao M., Kokubo M., Kokubo M. Simulating lung tumor motion for dynamic tumor-tracking irradiation. IEEE Nuclear Science Symposium Conference Record. 2007. P. 4549–4551. DOI: 10.1109/NSSMIC.2007.4437123
Werner R., Ehrhardt J., Schmidt R., Handels H. Modeling respiratory lung motion: a biophysical approach using finite element methods. Medical Imaging 2008: Physiology, Function, and Structure from Medical Images. 2008. DOI: 10.1117/12.769155
Trusov P.V., Zaitseva N.V., Tsinker M.Y. A mathematical model of the human respiratory system considering environmental influence. AIP Conference Proceedings: 28th Russian Conference on Mathematical Modelling in Natural Sciences. Perm: AIP Publishing, 2020. 060007. DOI: 10.1063/5.0003562
Xiao H., Bruhns O.T., Meyers A. Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica. 1997. Vol. 124. P. 89–105. DOI: 10.1007/bf01213020
Xiao H., Bruhns O.T., Meyers A. Hypo-elasticity model based upon the logarithmic stress rate. Journal of Elasticity. 1997. Vol. 47. P. 51–68. DOI: 10.1023/A:1007356925912
Pozdeyev A.A., Trusov P.V., Nyashin Y.I. Bol’shiye uprugoplasticheskiye deformatsii: teoriya, algoritmy, prilozheniya. Moscow: Nauka, 1986. 232 p.
Weibel E.R. Morphometry of the Human Lung. New York: Springer Verlag, Academic Press, 1963. URL: http://dx.doi.org/10.1007/978-3-642-87553-3
Gehr P., Bachofen M., Weibel E.R. The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respiration Physiology. 1978. Vol. 32. P. 121–140. DOI: 10.1016/0034-5687(78)90104-4
Armstrong J.D., Gluck E.H., Crapo R.O., Jones H.A., Hughes J.M. Lung tissue volume estimated by simultaneous radiographic and helium dilution methods. Thorax. 1982. Vol. 37. P. 676–679. DOI: 10.1136/thx.37.9.676
Kamschulte M., Schneider C.R., Litzbauer H.D., Tscholl D., Schneider C., Zeiner C., Krombach G.A., Ritman E.L., Bohle R.M., Langheinrich A.C. Quantitative 3D Micro-CT Imaging of Human Lung Tissue. Fortschr Rцntgenstr. 2013. Vol. 185. P. 869–876. DOI: 10.1055/s-0033-1350105
Denison D.M., Morgan M.D., Millar A.B. Estimation of regional gas and tissue volumes of the lung in supine man using computed tomography. Thorax. 1986. Vol. 41, no. 8. P. 620–628. DOI: 10.1136/thx.41.8.620
Lai-Fook S.J., Hyatt R.E. Effects of age on elastic moduli of human lungs. Journal of Applied Physiology. 2000. Vol. 89, no. 1. P. 163–168. DOI: 10.1152/jappl.2000.89.1.163
Unleash the Power of ParaView. URL: https://www.paraview.org/ (accessed: 23.9.2024)
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.