Simulation of airflow in an elastic-deformable porous medium approximating human lungs: structure, basic equations and resolution relations of the model

Authors

  • Petr Valentinovich Trusov Perm National Research Polytechnic University; Federal Scientific Center for Medical and Preventive Health Risk Management Technologies https://orcid.org/0000-0001-8997-5493
  • Nina Vladimirovna Zaitseva Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Russian Academy of Sciences, Medical Science Department https://orcid.org/0000-0003-2356-1145
  • Mikhail Yur′yevich Tsinker Perm National Research Polytechnic University; Federal Scientific Center for Medical and Preventive Health Risk Management Technologies https://orcid.org/0000-0002-2639-5368
  • Vladislav Vladimirovich Nurislamov Perm National Research Polytechnic University; Federal Scientific Center for Medical and Preventive Health Risk Management Technologies https://orcid.org/0009-0009-6206-8047

DOI:

https://doi.org/10.7242/1999-6691/2024.17.2.20

Abstract

This paper is devoted to refining the mathematical model of the human respiratory system designed to predict the occurrence of respiratory pathologies caused by the negative effects of atmospheric air pollution. It is difficult to identify individual air channels in the human lungs, consisting of small respiratory tracts, called alveoli, through which oxygen from the air passes into blood. Therefore, the human lungs are modeled as a two-phase elastically deformable saturated porous medium, in which one phase is the deformable skeleton of the medium (lung tissue) described by the model of deformable solid body, and the other phase is gas filling the porous space. We construct the model of air flow in the human lungs, which consists of the sub-model of elastic deformation of the porous lung medium, experiencing large displacement gradients, and the sub-model of air filtration through the deformable porous medium. The model takes into account the relationships between sub-models of the respiratory system, i.e. we consider the coupled problems of deformation and filtration in differential form.  Since at present the analytical solution of the stated essentially nonlinear problem is unfeasible, the problem is formulated in a generalized weak form to allow subsequent application of numerical methods using the Galerkin method. For the numerical solution of the nonlinear problem of deformation of the two-phase lung medium, it is suggested to use the finite element method, for the filtration problem - the finite volume method. The resolving relations needed to solve the formulated sub-problems are derived. To solve the nonlinear problem, we developed algorithms and a set of programs. The description of these computational tools, as well as analysis of the results obtained will be presented in our the next paper.

Downloads

Download data is not yet available.

References

Rakitskii V.N., Avaliani S.L., Novikov S.M., Shashina T.A., Dodina N.S., Kislitsin V.A. Health risk analysis related to exposure to ambient air contamination as a component in the strategy aimed at reducing global non-infectious epidemics. Health Risk Analysis. 2019. No. 4. P. 30–36. DOI: 10.21668/health.risk/2019.4.03.eng.

Grzywa-Celińska A., Krusiński A., Milanowski J. ‘Smoging kills’ – Effects of air pollution on human respiratory system. Annals of Agricultural and Environmental Medicine. 2020. Vol. 27. P. 1–5. DOI: 10.26444/aaem/110477.

WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. 2021. URL: https://pubmed.ncbi.nlm.nih.gov/34662007/ (accessed: 1.7.2024) PMID: 34662007.

Trusov P.V., Zaitseva N.V., Tsinker M.Y. Modeling of human breath: conceptual and mathematical statements. Mathematical Biology and Bioinformatics. 2016. Vol. 11, no. 1. P. 64–80. DOI: 10.17537/2016.11.64.

Anatomiya cheloveka. Vol. 1 / ed. by M. Sapin. Moscow: Medicina, 1993. 544 p.

Sinel’nikov R.D., Sinel’nikov Y.R. Atlas anatomii cheloveka. Vol. 2. Moscow: Meditsina, 1996. 264 p.

Rahimi-Gorji M., Pourmehran O., Gorji-Bandpy M., Gorji T.B. CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways. Journal of Molecular Liquids. 2015. Vol. 209. P. 121–133. DOI: 10.1016/j.molliq.2015.05.031.

Rahman M., Zhao M., Islam M.S., Dong K., Saha S.C. Numerical study of nano and micro pollutant particle transport and deposition in realistic human lung airways. Powder Technology. 2022. Vol. 402. 117364. DOI: 10.1016/j.powtec.2022.117364.

Trusov P.V., Zaitseva N.V., Tsinker M.Y., Kuchukov A.I. Numeric Investigation of Non-Stationary Dust-Containing Airflow and Deposition of Dust Particles in the Lower Airways. Mathematical Biology and Bioinformatics. 2023. Vol. 18, no. 2. P. 347–366. DOI:10.17537/2023.18.347.

Weibel E.R. Morphometry of the Human Lung. New York: Springer Berlin Heidelberg, 1963. DOI: 10.1007/978-3-642-87553-3.

Horsfield K., Dart G., Olson D.E., Filley G.F., Cumming G. Models of the human bronchial tree. Journal of Applied Physiology. 1971. Vol. 31. P. 207–217. DOI: 10.1152/jappl1971.31.2.207.

Trusov P.V., Zaitseva N.V., Tsinker M.Y. On modeling of airflow in human lungs: constitutive relations to describe deformation of porous medium. PNRPU Mechanics Bulletin. 2020. No. 4. P. 165–174. DOI: 10.15593/perm.mech/2020.4.14.

Leont’yev N.E. Osnovy teorii fil’tratsii. Moscow: MAKS Press, 2017. 88 p.

DeGroot C.T. Numerical Modelling of Transport in Complex Porous Media: Metal Foams to the Human Lung: PhD thesis / DeGroot C.T. University of Western Ontario, 2012. URL: https://ir.lib.uwo.ca/etd/655 (accessed: 1.7.2024).

DeGroot C.T., Straatman A.G. A Conjugate Fluid–Porous Approach for Simulating Airflow in Realistic Geometric Representations of the Human Respiratory System. Journal of Biomechanical Engineering. 2016. Vol. 138, no. 3. P. 034501. DOI: 10.1115/1.4032113.

Biot M.A. General Theory of Three-Dimensional Consolidation. Journal of Applied Physics. 1941. Vol. 12, no. 2. P. 155–164. DOI: 10.1063/1.1712886.

Biot M.A. General solutions of the equations of elasticity and consolidation for a porous material. Journal of Applied Mechanics. 1956. Vol. 23. P. 91–96.

Leybenzon L.S. Dvizheniye zhidkostey i gazov v poristoy srede. Moscow-Leningrad: Gostekhizdat, 1947. 244 p.

Barenblatt G.I., Yentov V.M., Ryzhik V.M.Teoriya nestatsionarnoy fil’tratsii zhidkosti i gaza. Moscow: Nedra, 1972. 288 p.

Siraev R.R. Fluid transport in forchheimer porous medium with spatially varying porosity and permeability. Computational continuum mechanics. 2019. Vol. 12, no. 3. P. 281–292. DOI: 10.7242/1999-6691/2019.12.3.24.

Sheshenin S., Artamonova N. The Simulation of the Nonlinear Consolidation of Porous Media. PNRPU Mechanics Bulletin. 2022. No. 1. P. 167–176. DOI: 10.15593/perm.mech/2022.1.13.

Artamonova N.B., Sheshenin S.V. Finite element implementation of a geometrically and physically nonlinear consolidation model. Continuum Mechanics and Thermodynamics. 2023. Vol. 35, no. 4. P. 1291–1308. DOI: 10.1007/s00161-022-01124-5.

Weibel E.R. What makes a good lung? Swiss Medical Weekly. 2009. Vol. 139, no. 27/28. P. 375–386. DOI: 10.4414/smw.2009.12270.

Trusov P.V., Zaitseva N.V., Tsinker M.Y., Nekrasova A.V. Mathematical Model of Airflow and Solid Particles Transport in The Human Nasal Cavity. Mathematical Biology and Bioinformatics. 2021. Vol. 16, no. 2. P. 349–366. DOI: 10.17537/2021.16.349.

Gehr P., Bachofen M., Weibel E.R. The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respiration Physiology. 1978. Vol. 32. P. 121–140. DOI: 10.1016/0034-5687(78)90104-4.

Armstrong J.D., Gluck E.H., Crapo R.O., Jones H.A., Hughes J.M. Lung tissue volume estimated by simultaneous radiographic and helium dilution methods. Thorax. 1982. Vol. 37. P. 676–679. DOI: 10.1136/thx.37.9.676.

Kamschulte M., Schneider C.R., Litzbauer H.D., Tscholl D., Schneider C., Zeiner C., Krombach G.A., Ritman E.L., Bohle R.M., Langheinrich A.C. Quantitative 3D Micro-CT Imaging of Human Lung Tissue. Fortschr Röntgenstr. 2013. Vol. 185. P. 869–876. DOI: 10.1055/s-0033-1350105.

Pozdeyev A.A., Trusov P.V., Nyashin Y.I. Bol’shiye uprugoplasticheskiye deformatsii: teoriya, algoritmy, prilozheniya. Moscow: Nauka, 1986. 232 p.

Lurie A.I. Nonlinear theory of elasticity. Elsevier, 2012. 617 p.

Atluri S.N. On Some New General and Complementary Energy Theorems for the Rate Problems in Finite Strain, Classical Elastoplasticity. Journal of Structural Mechanics: An International Journal. 1980. Vol. 8, no. 1. P. 61–92. DOI: 10.1080/03601218008907353.

Trusov P.V., Zaitseva N.V., Tsinker M.Y. A mathematical model of the human respiratory system considering environmental influence. AIP Conference Proceedings. 2020. Vol. 2216. 060007. DOI: 10.1063/5.0003562.

Hencky H. Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Zeitschrift für technische Physik. 1928. Vol. 6. P. 215–220.

Xiao H., Bruhns O.T., Meyers A. Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica. 1997. Vol. 124. P. 89–105. DOI: 10.1007/bf01213020.

Xiao H., Bruhns O.T., Meyers A. Hypo-elasticity model based upon the logarithmic stress srate. Journal of Elasticity. 1997. Vol. 47. P. 51–68. DOI: 10.1023/A:1007356925912.

Sandhu R.S., Pister K.S. Variational methods in continuum mechanics. Variational Methods in Engineering. Vol. 1 / ed. by C. Brebbia, H. Tottenham. Southampton University Press, 1973. P. 1/13–1/25.

Berdichevskiy V.L. Variatsionnyye printsipy mekhaniki sploshnoy sredy. Moscow: Nauka, 1983. 448 p.

Vashizu K. Variational methods in elasticity and plasticity. Pergamon Press, 1987. 630 p.

Oden J.T. Variational principles in nonlinear continuum mechanics. Var. meth. Eng. Southampton. Vol. 1. 1973. P.2/1–2/20, 2/105–2/108.

Oden J.T. Finite elements of nonlinear continua. McGraw-Hill, 1971. 432 p.

Neale K.W. On the Application of a Variational Principle for Large-Displacement Elastic-Plastic Problems. Variational Methods in the Mechanics of Solids. Elsevier, 1980. P. 374–377. DOI: 10.1016/B978-0-08-024728-1.50066-5.

Mikhlin S.G. Variatsionnyye metody v matematicheskoy fizike. Moscow: Nauka, 1970. 512 p.

Kantorovich L.V., Krylov V.I. Priblizhennyye metody vysshego analiza. Moscow, Leningrad: Fizmattiz, 1962. 708 p.

Marchuk G.I. Metody vychislitel’noy matematiki. Moscow: Nauka, 1980. 536 p.

Trenogin V.A. Funktsional’nyy analiz. Moscow: Nauka, 1980. 536 p.

Trusov P.V., Tsinker M.Y. Generalized solution for the boundary value problem of airflow in a deformable porous medium approximating human lungs. AIP Conference Proceedings. 2023. Vol. 2627. 050012. DOI: 10.1063/5.0117384.

Zienkiewicz O.C. The Finite Element Method in Engineering Science. McGraw-Hill, 1971. 521 p.

Jasak H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows: Thesis submitted for the Degreeof Doctor of Philosophy of the University of London and Diploma of Imperial College: PhD thesis / Jasak H. London: Department of Mechanical Engineering Imperial College of Science, Technology, Medicine, 1996. P. 396.

Moraes A., Lage P., Cunha G., da Silva L.F.R. Analysis of the non-orthogonality correction of finite volume discretization on unstructured meshes. Proc. of the 22nd International Congress of Mechanical Engineering. COBEM2013, Ribeirão Preto,SP, Brazil, November 3-7, 2013. P. 3519–3530.

Dean R.H., Gai X., Stone C.M., Minkoff S.E. A Comparison of Techniques for Coupling Porous Flow and Geomechanics. SPE Journal. 2006. Vol. 11, no. 1. P. 132–140. DOI: 10.2118/79709-PA.

Jeannin L., Mainguy M., Masson R., Vidal-Gilbert S. Accelerating the convergence of coupled geomechanical-reservoir simulations. International Journal for Numerical and Analytical Methods in Geomechanics. 2006. Vol. 31, no. 10. P. 1163–1181. DOI: 10.1002/nag.576.

Settari A., Mounts F.M. A Coupled Reservoir and Geomechanical Simulation System. SPE Journal. 1998. Vol. 3, no. 3. P. 219–226. DOI: 10.2118/50939-PA.

Settari A., Walters D.A. Advances in Coupled Geomechanical and Reservoir Modeling With Applications to Reservoir Compaction. SPE Journal. 2001. Vol. 6, no. 3. P. 334–342. DOI: 10.2118/74142-PA.

Wheeler M.F., Gai X. Iteratively coupled mixed and Galerkin finite element methods for poro-elasticity. Numerical Methods for Partial Differential Equations. 2007. Vol. 23, no. 4. P. 785–797. DOI: 10.1002/num.20258.

Kim J., Tchelepi H.A.A., Juanes R. Stability, Accuracy, and Efficiency of Sequential Methods for Coupled Flow and Geomechanics. SPE Journal. 2011. Vol. 16. P. 249–262. DOI: 10.2118/119084-PA.

Published

2024-07-31

Issue

Section

Articles

How to Cite

Trusov, P. V., Zaitseva, N. V., Tsinker, M. Y., & Nurislamov, V. V. (2024). Simulation of airflow in an elastic-deformable porous medium approximating human lungs: structure, basic equations and resolution relations of the model. Computational Continuum Mechanics, 17(2), 219-231. https://doi.org/10.7242/1999-6691/2024.17.2.20