Damage accumulation model for orthotropic composite material

Authors

DOI:

https://doi.org/10.7242/1999-6691/2024.17.1.5

Keywords:

orthotropic elastic material, elastic tensor, layered composite, damage, defects

Abstract

The paper presents a theoretical and experimental study of the influence of damage accumulation in composite material on the elastic fourth-rank tensor and on the strength under quasi-static, cyclic and dynamic loads. Layered polymer composites (glass or carbon fiber-reinforced plastic) are considered. This work aims to develop a mathematical model that accounts for the impact of damage in the composite material on the fourth-rank tensor of elastic properties. The constitutive relations for an orthotropic composite material are proposed, taking into account the accumulation of damage during tensile or shear loading. A numerical simulation using the finite element method is done for a periodicity cell for composite variants (unidirectional, layered, etc.) to determine the effective elastic properties. Quasi-static loading experiments were conducted on composite samples (carbon plastic) to validate the model and the degradation of elastic properties was determined by measuring the longitudinal sound speed. The full-scale experiments confirmed that damage accumulation in carbon fiber-reinforced plastic leads to the degradation of its effective elastic properties. In this connection, a technique was developed to take into account irreversible damage in an orthotropic composite material through the components of the ductility tensor, which may be helpful for the design and analysis of composite structures. The findings of the study could help with the creation of new materials with enhanced mechanical characteristics, as well as with raising the quality of already-existing materials. The developed mathematical model of orthotropic composite material can be used to enhance the structural strength properties and boost the application safety in a variety of industry.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено за~счет гранта Российского научного фонда (проект № 21-79-30041), https://rscf.ru/en/project/21-79-30041/

References

URL: https://cae-expert.ru/product/ansys-composite. (Accessed: 20.4.2024).

URL: https://tesis.com.ru/cae_brands/abaqus/renov_abaqus.php?sphrase_id=23531. (Accessed: 20.4.2024).

URL: https://www.comsol.ru/products. (Accessed: 20.4.2024).

Radchenko P.A., Batuev S.P., Radchenko A.V. Three-dimensional Modelling of Deformation and Fracture of Heterogeneous Materials and Structures under Dynamic Loads (EFES 2.0): Computer Program. 2019. RU 2019664836.

Radchenko A.V, Radchenko P.A., Batuev S.P. Numerical Study of the Influence of Anisotropy of Physicomechanical Properties on the Impact Fracture of Orthotropic Composites. Russian Physics Journal. 2015. Vol. 58, no. 3. P. 319-329. DOI: 10.1007/s11182-015-0501-1.

Radchenko P., Batuev S., Radchenko A. Modeling of interaction between projectiles and structures made of anisotropic materials. AIP Conference Proceedings. Vol. 2288. AIP Publishing LLC. 2020. 030043. DOI: 10.1063/5.0028278.

Radchenko P.A., Batuev S.P., Radchenko A.V. Modeling the Destruction of an Anisotropic Composite Barrier in Interaction with Slender Strikers at an Angle. Journal of Engineering Physics and Thermophysics. 2022. Vol. 95, no. 1. P. 90-96. DOI: 10.1007/s10891-022-02457-3.

URL: https://cae-fidesys.com. (Accessed: 20.4.2024).

Levin V. The theory of multiple superposition of large deformations, a development for solving interdisciplinary problems. Chebyshev Collection. 2017. Vol. 18, no. 3. P. 518-537. DOI: 10.22405/2226-8383-2017-18-3-518-537.

Levin V., Vdovichenko I., Vershinin A., Yakovlev M., Zingerman K. Numerical Estimation of Effective Mechanical Properties for Reinforced Plexiglas in the Two-Dimensional Case. Modelling and Simulation in Engineering. 2016. Vol. 2016. 9010576. DOI: 10.1155/2016/9010576.

Nasedkin A., Nasedkina A., Remizov V. Finite element modeling of porous thermoelastic composites with account for their microstructure. Computational Continuum Mechanics. 2014. Vol. 7, no. 1. P. 100-109. DOI: 10.7242/1999-6691/2014.7.1.11.

Shubin S., Freidin A. A new algorithm for generating a random packing of ellipsoidal inclusions to construct composite microstructure. PNRPU Mechanics Bulletin. 2016. No. 4. P. 317-337. DOI: 10.15593/perm.mech/2016.4.19.

Tashkinov M. Method of calculation of elastic effective properties of two-phase polydisperse media using multipoint statistical descriptors and the integral equations technique. PNRPU Mechanics Bulletin. 2019. No. 2. P. 203-214. DOI: 10.15593/perm.mech/2019.2.17.

Raju B., Hiremath S., Roy Mahapatra D. A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites. Composite Structures. 2018. Vol. 204. P 607-619. DOI: 10.1016/j.compstruct.2018.07.125.

Sapozhnikov S.B., Shaburova N.A., Ignatova A.V, Shanygin A.N. Analysis of mesostructure and fracture kinetics of elements of lattice composite structures under transversal compression using stochastic fea micromechanics. PNRPU Mechanics Bulletin. 2022. No. 4. P. 54-66. DOI: 10.15593/perm.mech/2022.4.06.

Nasedkin A., Kornievsky A. Finite element modeling of effective properties of elastic materials with random nanosized porosity. Computational Continuum Mechanics. 2017. Vol. 10, no. 4. P. 375-387. DOI: 10.7242/1999-6691/2017.10.4.29.

Dmitrienko Y., Sborschikov S., Sokolov A., Shpakova Y. Computational modeling of failure of textile composites. Computational Continuum Mechanics. 2013. Vol. 6, no. 4. P. 389-402. DOI: 10.7242/1999-6691/2013.6.4.43.

Dolgikh D.A., Tashkinov M.A. Investigation of damage accumulation and delamination propagation in polymer composite materials based on two-level fracture models. PNRPU Mechanics Bulletin. 2020. No. 4. P 74-85. DOI: 10.15593/perm.mech/ 2020.4.07.

Sun Q., Zhou G., Yang Z., Breslin J., Meng Z. Multiscale modeling of failure behaviors in carbon fiber-reinforced polymer composites. Fundamentals of Multiscale Modeling of Structural Materials. Elsevier, 2023. P 239-292. DOI: 10.1016/B978-012-823021-3.00005-1.

Gontyuk A. Digimat software package from composite development and virtual testing of samples to modelling the manufacture and calculation of composite parts. Kompozitny‘j mir. 2019. No. 4. P. 42-51. In Russian.

Wan A., Li D., Lu P. Three-scale modeling and probabilistic progressive damage analysis of woven composite laminates. Mechanics of Advanced Materials and Structures. 2022. P. 602-618. DOI: 10.1080/15376494.2022.2116757.

Troshhenko V. Deformation and fracture of metals under high cyclic loading. Kiev: Naukova Dumka, 1981. 344 p. In Russian.

Structural strength of gas turbine engines’materials and parts / ed. by I. Birger, B. Balashov. Moscow: Mashinostroenie, 1981. 222 p. In Russian.

Kachanov L. On the time of failure under creep conditions. Izvestiia Akademii nauk SSSR. Otdel tekhnicheskikh nauk. 1958. Vol. 8. P. 26-31. In Russian.

Kachanov L. Foundations of fracture mechanics. Moscow: Nauka, 1974. 312 p. In Russian.

Rabotnov Y. Creep of structural elements. Moscow: Nauka, 1966. 452 p. In Russian.

Rabotnov Y. Mechanics of a deformable solid body. Moscow: Nauka, 1979. 744 p. In Russian.

Fatigue of metals / ed. by G. Uzhik. Moscow: Inostr. lit., 1961. 380 p. In Russian.

Karimbaev T. Fatigue life assessment of composite materials components. Aviczionny‘e dvigateli. 2020.4(9). P. 75-93. In Russian.

Fatigue and endurance of metals. Moscow: Izd. Inostr. lit., 1963. 497 p. In Russian.

Matveev V. To justification of use of deformation criteria for multi-cycle fatigue failure of metals. Message 1: Analysis of known approaches. Problemy prochnosti. 1995. No. 5. P. 11-21. In Russian.

Matveev V. To justification of use of deformation criteria for multi-cycle fatigue failure of metals. Message 2. A new approach. Problemy prochnosti. 1995. No. 5. P. 3-12. In Russian.

Troshhenko V., Khamaza L., Czy’banev G. Methods for accelerated determination of the endurance limits of metals based on strain and energy criteria. Kiev: Naukova dumka, 1979. 105 p. In Russian.

Troshhenko V., Fomichev L. Energy criterion for fatigue loading. Problemy‘ prochnosti. 1993. No. 1. P. 3-10. In Russian.

Vejbul V. Fatigue tests and analysis of results. Moscow: Mashinostroenie, 1964. 275 p. In Russian.

Bolotin V. Predicting the lifetime of machines and structures. Moscow: Mashinostroenie, 1984. 312 p. In Russian.

Serensen S., Kogaev V., Shnejderovin R. Loading capacity and strength calculations of machine parts. Moscow: Mashinostroenie, 1975. 488 p. In Russian.

Kogaev V. Strength calculations under time-varying stresses. Moscow: Mashinostroenie, 1993. 364 p. In Russian.

Afanas’ev N. Statistical theory of the fatigue strength of metals. Kiev: Izd-vo AN USSR, 1953. 123 p. In Russian.

Volkov S. Statistical theory of strength. Moscow: Mashgiz, 1960.176 p. In Russian.

Regel’ V., Sluczker A., Tomashevskij E. The kinetic nature of solid strength. Moscow: Nauka, 1974.560 p. In Russian.

Oding I. Allowed stresses in mechanical engineering and cyclic strength. Moscow: Mashgiz, 1962. 260 p. In Russian.

Ivanova V., Terent’ev F. The nature of metal fatigue. Moscow: Metallurgiya, 1975. 456 p. In Russian.

Fedorov V. Kinetics of damage and fracture in solids. Tashkent: izd-vo FAN Uzbekskoj SSR, 1985.168 p. In Russian.

Novikov I. Defects in the crystalline structure of metals. Moscow: Metallurgiya, 1975. 208 p. In Russian.

Ekobori T. Physics and mechanics of fracture and strength of solids. Moscow: Metallurgiya, 1971. 264 p. In Russian.

Vladimirov V. The physical nature of metal fracture. Moscow: Metallurgiya, 1984. 280 p. In Russian.

Panin V.E. Methodology of physical mesomechanics as a basis for model construction in computer-aided design of materials. Russian Physics Journal. 1995. Vol. 38, no. 11. P. 1117-1131. DOI: 10.1007/BF00559394.

Physical mesomechanics and computer design of materials. Vol. 1 / ed. by V. Panin. Novosibirsk: Nauka, 1995. 298 p. In Russian.

Panin V., Elsukova T., Angelova G., Sapozhnikov S. Influence of shear stability of crystal structure of polycrystals on their fatigue fracture mechanism on mesoscale level. Fizicheskaya mezomekhanika. 1998. No. 2. P. 45-50. In Russian.

Pobedrya B. Mechanics of composite materials. Moscow: MGU, 1984. 336 p. In Russian.

Surface layers and internal interfaces in heterogeneous materials / ed. by V. Panin. Novosibirsk: Izd-vo SO RAN, 2006. 520 p. In Russian.

Filled polymer composites: monograph / ed. by A. Gerasimov. Tomsk: TPU, 2014. 297 p. In Russian.

Vil’deman V, Sokolkin Y., Tashkinov A. Mechanics of inelastic deformation and fracture of composite materials. Moscow: Nauka. Fizmatlit, 1997. 288 p. In Russian.

Lomakin E.V., Fedulov B.N. Nonlinear anisotropic elasticity forlaminate composites. Meccanica. 2015. Vol. 50, no. 6. P. 1527-1535. DOI: 10.1007/s11012-015-0104-5.

Lomakin E.V., Lurie S.A., Belov P.A., Rabinskii L.N. Modeling of the localy-functional properties of the material damaged by fields of defects. Doklady Physics. 2017. Vol. 62, no. 1. P. 46-49. DOI: 10.1134/S1028335817010128.

Fedulov B.N., Fedorenko A.N., Kantor M.M., Lomakin E.V. Failure analysis of laminated composites based on degradation parameters. Meccanica. 2018. Vol. 53, no. 1/2. P 359-372. DOI: 10.1007/s11012-017-0735-9.

Ivanov D.S., Lomov S.V. Modelling the structure and behaviour of 2D and 3D woven composites used in aerospace applications. Polymer Composites in the Aerospace Industry. Elsevier, 2015. P. 21-52. DOI: 10.1016/B978-0-85709-523-7.00002-5.

Truong T.C., Ivanov D.S., Klimshin D.V., Lomov S.V., Verpoest I. Carbon composites based on multi-axial multi-ply stitched preforms. Part 7: Mechanical properties and damage observations in composites with sheared reinforcement. Composites Part A: Applied Science and Manufacturing. 2008. Vol. 39, no. 9. P. 1380-1393. DOI: 10.1016/j.compositesa.2008.05.004.

Kachanov M., Sevostianov I. Micromechanics of materials, with applications. Vol. 249. Cham: Springer, 2018. 712 p. DOI: 10.1007/978-3-319-77354-3.

Stepanova L. Computational simulation of the damage accumulation processes in cracked solids by the user procedure UMAT of Simulia Abaqus. PNRPU Mechanics Bulletin. 2018. No. 3. P. 71-86. DOI: 10.15593/perm.mech/2018.3.08.

Bayandin Y., Golovin M., Ledon D., Naimark O. Model of elastic modulus degradation and fracture of composite materials under cyclic loading. Procedia Structural Integrity. 2021. Vol. 32. P. 26-31. DOI: 10.1016/j.prostr.2021.09.005.

Carol I., Rizzi E., Willam K. On the formulation of anisotropic elastic degradation. I. Theory based on a pseudo-logarithmic damage tensor rate. International Journal of Solids and Structures. 2001. Vol. 38, no. 4. P. 491-518. DOI: 10.1016/S0020-7683(00)00030-5.

Carol I., Rizzi E., Willam K. On the formulation of anisotropic elastic degradation. II. Generalized pseudo-Rankine model for tensile damage. International Journal of Solids and Structures. 2001. Vol. 38, no. 4. P. 519-546. DOI: 10.1016/S0020- 7683(00)00031-7.

Subgrid Modeling and Extra Dimensions in COMSOL Webinar (Russian). 20.04.2023. https://www.comsol.ru/video/subgrid-modeling-and-extra-dimensions-in-comsol-webinar-ru.

Bayandin Y., Panteleev I., Zhitnikova K., Naimark O. Numerical simulation of deformation and failure of orthotropic composite materials. AIP Conference Proceedings. Vol. 1785. AIP Publishing. 2016. P. 040007. DOI: 10.1063/1.4967064.

Bannikov M., Sazhenkov N., Balakirev A., Sazhenkov N., Uvarov S., Bayandin Y., Nikitiuk A., Nikhamkin M., Naimark O. Acoustic emission phase analysis of damage-failure transition staging in composite materials. Procedia Structural Integrity. 2022. Vol. 41. P. 518-526. DOI: 10.1016/j.prostr.2022.05.059.

Panteleev I., Bayandin Y., Naimark O. Spatial and temporal patterns of damage development during deformation of a fiberglass woven laminate according to acoustic emission data. Physical mesomechanics. 2016. Vol. 19, no. 4. P. 64-73. DOI: 10.24411/1683-805X-2016-00008.

Panteleev I.A., Bayandin Y.V., Plekhov O.A. Effect of synchronization of continuous acoustic emission statistical properties during structurally heterogeneous materials deformation. PNRPU Mechanics Bulletin. 2022. No. 3. P. 5-13. DOI: 10.15593/perm.mech/2022.3.01.

Published

2024-05-12

Issue

Section

Articles

How to Cite

Bayandin, Y. V., Golovin, M. S., Bannikov, M. V., & Uvarov, S. V. (2024). Damage accumulation model for orthotropic composite material. Computational Continuum Mechanics, 17(1), 44-59. https://doi.org/10.7242/1999-6691/2024.17.1.5