Oscillations of the liquid metal flow generated by an alternating magnetic field

Authors

DOI:

https://doi.org/10.7242/1999-6691/2024.17.1.3

Keywords:

magnetohydrodynamics, alternating magnetic field, electromagnetic force, vortex flow, azimuthal pinch, numerical modeling, ANSYS Fluent package

Abstract

This paper studies numerically a vortex flow of liquid metal driven by an electromagnetic force, which is generated by the interaction of the alternating magnetic field of a short solenoid with the induced electrical current. A short solenoid is placed coaxially to a cylindrical cell at half of its height. The mathematical model used to describe the process is based on the equations of magnetic hydrodynamics in the induction-free approximation. Calculations, which are carried out by the control volume method using the ANSYS Fluent package, show that the average flow has the form of two toroidal vortices. The calculated velocity fields are indicative of the oscillatory behavior of vortices, accompanied by a change in their sizes. In the examined range of the force parameter, the predominant flow pattern is the single-mode oscillatory flow. The dependences of characteristic frequency and Reynolds number on the force parameter, are obtained using spectral analysis. It has been found that the oscillation period is close to the period of rotation of a large-scale vortex. It has been established that the oscillations are of quasi-periodic character, and a distinct oscillation frequency is observed only in the flow region near the solenoid. The effect of velocity fluctuations is strong and can be detected in laboratory conditions when using gallium eutectic. Such experiment is planned for the near future. The flow rate of gallium eutectic will be measured by an ultrasonic Doppler anemometer. The results of numerical modeling and their verifications can be useful in determining the ways of reducing the intensity of vortex flows during the electromagnetic separation of impurities, which is based on the induction mechanism responsible for the generation of electromagnetic force that displaces particles. The data on the oscillation frequency of the unsteady flow can be used in the development of a non-contact technique for estimating the average electrical conductivity of a two-phase medium, such as a liquid metal with undesirable impurities.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено за счет гранта Российского научного фонда и Пермского края № 22-19-20106, https://rscf.ru/project/22-19-20106/.

References

Povkh I.L., Kapusta A.B., Chekin B.V. Magnitnaya gidrodinamika v metallurgii. Moscow: Metallurgiya, 1974. 240 p.

Arkhipov V.M. Tekhnikaraboty s natriyem na AES. Moscow: Energoatomizdat, 1986.136 p.

Tarapore E.D., Evans J.W. Fluid velocities in induction melting furnaces: Part I. Theory and laboratory experiments. Metallurgical Transactions B. 1976. Vol. 7, no. 3. P. 343-351. DOI: 10.1007/bf02652704.

Moffatt H.K. Electromagnetic stirring. Physics of Fluids A: Fluid Dynamics. 1991. Vol. 3, no. 5. P. 1336-1343. DOI: 10.1063/1.858062.

Denisov S., Dolgikh V, Khripchenko S., Kolesnichenko I., Nikulin I. The effect of traveling and rotating magnetic fields on the structure of aluminum alloy during its crystallization in a cylindrical crucible. Magnetohydrodynamics. 2014. Vol. 50, no. 4. P. 407-422. DOI: 10.22364/mhd.50.4.8.

Vol’dekA. Induktsionnyye magnitogidrodinamicheskiye mashiny s zhidkometallicheskim rabochim telom. Leningrad: Energiya, 1970. 271 p.

Kolesnichenko I., Khalilov R. Extremum in the dependence of the head generated by electromagnetic pump of liquid metal on feeding current frequency. Computational Continuum Mechanics. 2022. Vol. 15, no. 4. P. 495-506. DOI: 10.7242/1999-6691/2022.15.4.38.

Povkh I.L., Chekin B.V. Magnitogidrodinamicheskaya separatsiya. Kiyev: Naukova dumka, 1978.148 p.

Kolesnichenko I. Investigation of electromagnetic force action on two-phase electrically conducting media in a flat layer. Magnetohydrodynamics. 2013. Vol. 49, no. 1. P. 217-222. DOI: 10.22364/mhd.

Mamykin A., Losev G., Kolesnichenko I. Model of electromagnetic purification of liquid metal. Magnetohydrodynamics. 2021. Vol. 57, no. 1.P. 73-84.DOI: 10.22364/mhd.

Kolesnichenko I.V., Mamykin A.D., Losev G.L. Device for cleaning molten metal and electrolytes from impurities. 2019. RF PatentNo. 2,681,092, Byull. Izobret., 4 April 2019.

Xu Z., Li T, Zhou Y. Continuous Removalof Nonmetallic Inclusions from Aluminum Melts by Means of Stationary Electromagnetic Field and DC Current. Metallurgical and Materials Transactions A. 2007. Vol. 38, no. 5. P. 1104-1110. DOI: 10.1007/s11661-007-9149-y.

Taniguchi S., Brimacombe J.K. Application of Pinch Force to the Separation of Inclusion Particles from Liquid Steel. ISIJ International. 1994. Vol. 34, no. 9. P. 722-731. DOI: 10.2355/isijinternational.34.722.

Zhang B., Ren Z., Wu J. Continuous electromagnetic separation of inclusion from aluminum melt using alternating current. Transactions of Nonferrous Metals Society of China. 2006. Vol. 16, no. 1. P. 33-38. DOI: 10.1016/S1003-6326(06)60006-X.

Shu D., Sun B., Li K., Wang J., Zhou Y. Effects of Secondary Flow on the Electromagnetic Separation of Inclusions from Aluminum Melt in a Square Channel by a Solenoid. ISIJ International. 2002. Vol. 42, no. 11. P. 1241-1250. DOI: 10.2355/isijinternational.42.1241.

Galpin J.M., Fautrelle Y. Liquid-metal flows induced by low-frequency alternating magnetic fields. Journal of Fluid Mechanics. 1992. Vol. 239. P 383-408. DOI: 10.1017/S0022112092004452.

Cramer A., Galindo V., Zennaro M. Frequency dependence of an alternating magnetic field driven flow. Magnetohydrodynamics. 2015. Vol. 51, no. 1.P, 133-148.DOI: 10.22364/mhd.51.1.13.

Umbrashko A., Baake E., Nacke B., Jakovics A. Modeling of the turbulent flow in induction furnaces. Metallurgical and Materials Transactions B. 2006. Vol. 37. P. 831-838. DOI: 10.1007/s11663-006-0065-0.

Scepanskis M., Jakovics A., Baake E., Nacke B. Analysis of the oscillating behaviour of solid inclusions in induction crucible furnaces. Magnetohydrodynamics. 2012. Vol. 48, no. 4. P. 677-686. DOI: 10.22364/mhd.48.4.8.

Rogozhkin S., Aksenov A., Zhluktov S., Osipov S., Sazonova M., Fadeyev I., Shepelev S., Shmelev V. Development and verification of a turbulent heat transport model for sodium-based liquid metal coolants. Computational Continuum Mechanics. 2014. Vol. 7, no. 3. P. 306-316. DOI: 10.7242/1999-6691/2014.7.3.30.

Khalilov R., Kolesnichenko I., Pavlinov A., Mamykin A., Shestakov A., Frick P. Thermal convection of liquid sodium in inclined cylinders. Physical Review Fluids. 2018. Vol. 3, no. 043503. DOI: 10.1103/physrevfluids.3.043503.

Dobosz A., Plevachuk Y., Sklyarchuk V., Sokoliuk B., Gancarz T. Thermophysical properties of the liquid Ga-Sn-Zn eutectic alloy. Fluid Phase Equilibria. 2018. Vol. 465. P. 1-9. DOI: 10.1016/j.fluid.2018.03.001.

Frick P., Mandrykin S., Eltishchev V, Kolesnichenko I. Electro-vortex flows in a cylindrical cell under axial magnetic field. Journal of Fluid Mechanics. 2022. Vol. 949, A-20. DOI: 10.1017/jfm.2022.746.

Losev G., Kolesnichenko I. The influence of the waveguide on the quality of measurements with ultrasonic Doppler velocimetry. Flow Measurement and Instrumentation. 2020. Vol. 75, no. 101786. DOI: 10.1016/j.flowmeasinst.2020.101786.

Frick P.G., Sokolov D.D., Stepanov R.A. Wavelets for the space-time structure analysis of physical fields. Physics-Uspekhi. 2022. Vol. 192, no. 1.P, 69-99. DOI: 10.3367/ufne.2020.10.038859.

Vasiliev A.Y., Sukhanovskii A.N., Frick P G. Structure and dynamics of large-scale circulation in turbulent convection at high Prandtl number. Fluid Dynamics. 2020. Vol. 55, no. 6. P. 760-767. DOI: 10.31857/S0568528120060134.

Published

2024-05-12

Issue

Section

Articles

How to Cite

Poluyanov, A. O., & Kolesnichenko, I. V. (2024). Oscillations of the liquid metal flow generated by an alternating magnetic field. Computational Continuum Mechanics, 17(1), 24-32. https://doi.org/10.7242/1999-6691/2024.17.1.3