Modeling of nanochannels in synthetic membranes

Authors

DOI:

https://doi.org/10.7242/1999-6691/2024.17.1.1

Keywords:

membrane, nanochannel, Nernst-Planck-Poisson-Navier-Stokes system, electroosmosis, numerical simulation

Abstract

The behavior of a diluted electrolyte in a system of joint microchannel and nanochannel with charged dielectric walls under the action of external potential difference and external pressure is investigated numerically. The surface charge on the nanochannel walls prevents the ions of corresponding polarity from passing through it. Consequently, the system in question acquires ion-selective properties and can, under certain assumptions, be viewed as a fragment of an ion-selective membrane, including one synthesized by creating nanopores in a dielectric material. Such systems are used in experiments to control the movement of charged particles through concentration polarization. The objective of the work is to investigate the influence of a single pore on electrolyte flow and the possibilities to control that flow by changing the geometric and physical properties of the pore. The investigation relies on the specially developed simplified models based on cross-section-averaged Nernst-Planck, Poisson and Stokes equations that are subsequently reduced to a single nonlinear differential equation. The simplified models allow identifying the impact of different physical mechanisms of electrolyte movement: pressure-based (generated by the external mechanical action) and electroosmotic (generated by the electric field). A finite-difference method with semi-implicit time integration is used for the numerical solution of equations. It has been found that the behavior of the system qualitatively matches the behavior of a cell based on a non-ideally-selective ion-exchange membrane. In particular, the model correctly predicts the underlimiting and limiting electric current regimes, as well as vortex formation near the nanochannel inlet due to concurrency between electrolyte movement mechanisms. The proposed models can be extended to describe a channel with arbitrary geometry and an electrolyte with arbitrary number of charged species.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при поддержке Российского научного фонда, проект № 22-29-00307 (https://rscf.ru/project/22-29-00307/).

References

Chang H.-C., Yossifon G., Demekhin E.A. Nanoscale Electrokinetics and Microvortices: How Microhydrodynamics Affects Nanofluidic Ion Flux. Annual Review of Fluid Mechanics. 2012. Vol. 44. P. 401–426. DOI: 10.1146/annurev-fluid-120710- 101046.

Han W., Chen X. A review: applications of ion transport in micro-nanofluidic systems based on ion concentration polarization. Journal of Chemical Technology & Biotechnology. 2020. Vol. 95. P. 1622–1631. DOI: 10.1002/jctb.6288.

Siwy Z., Gu Y., Spohr H.A., Baur D., Wolf-Reber A., Spohr R., Apel P., Korchev Y.E. Rectification and voltage gating of ion currents in a nanofabricated pore. Europhysics Letters (EPL). 2002. Vol. 60. P. 349–355. DOI: 10.1209/epl/i2002-00271-3.

Mikhaylin S., Nikonenko V., Pismenskaya N., Pourcelly G., Choi S., Kwon H.J., Han J., Bazinet L. Howphysico-chemicalandsurface properties of cation-exchange membrane affect membrane scaling and electroconvective vortices: Influence on performance of electrodialysis with pulsed electric field. Desalination. 2016. Vol. 393. P. 102–114. DOI: 10.1016/j.desal.2015.09.011.

Levich V.G. Physicochemical hydrodynamics. New York: Prentice Hall, 1962. 700 p.

Rubinstein I., Zaltzman B. Electro-osmotically induced convection at a permselective membrane. Physical Review E. 2000. Vol. 62. P. 2238–2251. DOI: 10.1103/PhysRevE.62.2238.

Demekhin E.A., Nikitin N.V., Shelistov V.S. Direct numerical simulation of electrokinetic instability and transition to chaotic motion. Physics of Fluids. 2013. Vol. 25. 122001. DOI: 10.1063/1.4843095.

Ouyang W., Ye X., Li Z., Han J. Deciphering ion concentration polarization-based electrokinetic molecular concentration at the micro-nanofluidic interface: theoretical limits and scaling laws. Nanoscale. 2018. Vol. 10. P. 15187–15194. DOI: 10.1039/ c8nr02170h.

Abu-Rjal R., Chinaryan V., Bazant M.Z., Rubinstein I., Zaltzman B. Effect of concentration polarization on permselectivity. Physical Review E. 2014. Vol. 89. 012302. DOI: 10.1103/PhysRevE.89.012302.

Ganchenko G.S., Kalaydin E.N., Schiffbauer J., Demekhin E.A. Modes of electrokinetic instability for imperfect electric membranes. Physical Review E. 2016. Vol. 94. 063106. DOI: 10.1103/PhysRevE.94.063106.

Demekhin E.A., Ganchenko G.S., Kalaydin E.N. Transition to electrokinetic instability near imperfect charge-selective membranes. Physics of Fluids. 2018. Vol. 30. 082006. DOI: 10.1063/1.5038960.

Probstein R.F. Physicochemical Hydrodynamics: An Introduction. Wiley, 1994. 416 p. DOI: 10.1002/0471725137.

Chang H.-C., Yeo L.Y. Electrokinetically-driven microfluidics and nanofluidics. Cambridge University Press, 2010. 526 p.

Mani A., Zangle T.A., Santiago J.G. On the Propagation of Concentration Polarization from Microchannel–Nanochannel Interfaces Part I: Analytical Model and Characteristic Analysis. Langmuir. 2009. Vol. 25. P. 3898–3908. DOI: 10.1021/la803317p.

Zangle T.A., Mani A., Santiago J.G. On the Propagation of Concentration Polarization from Microchannel–Nanochannel Interfaces Part II: Numerical and Experimental Study. Langmuir. 2009. Vol. 25. P. 3909–3916. DOI: 10.1021/la803318e.

Mani A., Bazant M.Z. Deionization shocks in microstructures. Physical Review E. 2011. Vol. 84. 061504. DOI: 10.1103/ PhysRevE.84.061504.

Yaroshchuk A. Over-limiting currents and deionization “shocks” in current-induced polarization: Local-equilibrium analysis. Advances in Colloid and Interface Science. 2012. Vol. 183/184. P. 68–81. DOI: 10.1016/j.cis.2012.08.004.

Nikonenko V.V., Pismenskaya N.D., Belova E.I., Sistat P., Huguet P., Pourcelly G., Larchet C. Intensive current transfer in membrane systems: Modelling, mechanisms and application in electrodialysis. Advances in Colloid and Interface Science. 2010. Vol. 160. P. 101–123. DOI: 10.1016/j.cis.2010.08.001.

Schlichting H. Grenzschicht-Theorie [Boundary layer theory]. G. Braun, 1951. 483 p.

Nikitin N. Third-order-accurate semi-implicit Runge–Kutta scheme for incompressible Navier–Stokes equations. International Journal for Numerical Methods in Fluids. 2006. Vol. 51. P. 221–233. DOI: 10.1002/fld.1122.

Kiriy V.A., Shelistov V.S., Kalaidin E.N., Demekhin E.A. Hydrodynamics, electroosmosis, and electrokinetic instability in imperfect electric membranes. Doklady Physics. 2017. Vol. 62. P. 222–227. DOI: 10.1134/s1028335817040139.

Published

2024-05-12

Issue

Section

Articles

How to Cite

Alekseev, M. S., Ponomarev, R. R., Shelistov, V. S., Popov, V. A., Morshneva, I. V., & Demekhin, E. A. (2024). Modeling of nanochannels in synthetic membranes. Computational Continuum Mechanics, 17(1), 5-14. https://doi.org/10.7242/1999-6691/2024.17.1.1