Aspects of numerical simulation of failure of elastic-brittle solids

Authors

DOI:

https://doi.org/10.7242/1999-6691/2023.16.4.35

Keywords:

failure, numerical modeling, ANSYS, rigidity reduction

Abstract

Understanding the nucleation and evolution of microdefects in solid bodies is important to ensure the reliability and safety of critical structures and to identify their strength and deformation resources. In numerical modeling, failure zones can be represented as areas with significantly underestimated rigid characteristics by analogy with the method of variable elastic parameters used in solving the boundary-value problems of the theory of plasticity. However, the formal application of numerical algorithms of plasticity does not always lead to an adequate description of failure processes especially in elastic-brittle bodies. This paper considers some aspects of the numerical simulation of failure processes, such as    the calculation of a stress-strain state after reducing the rigidity of finite elements under constant boundary conditions by organizing an appropriate iteration procedure, and the selection of the maximum number of finite elements fractured per iteration, the value of a loading step, and the discretization degree of the computational domain. The influence of the above aspects on the results of failure simulation is illustrated by comparing the numerical solutions to the problem of deformation of the strip made of elastic-brittle material with the edge stress concentrator, which were obtained by different algorithms. The loading diagrams were plotted, and the implementation of the post-critical stage at the macro level was demonstrated. Failure kinetics was analyzed for different variants of implementation of the iterative procedure and at a variable number of elements fractured per iteration. It has been found that, in order to get an accurate description of deformation and failure processes, the automatic selection of a loading step seems to be more reasonable. Analysis has indicated that the discretization degree of the computational domain has a strong impact on the modeling results. This suggests that the finite element size should correspond to a certain strength constant of a material having the dimensions of length.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено за счет гранта Российского научного фонда № 22-19-00765 (https://rscf.ru/project/22-19-00765/) в Пермском национальном исследовательском политехническом университете.

References

Ilinykh A.V. Numerical modeling of structural fracture processes for granular composites with isotropic elements of structure. Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki – J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 2011, no. 2(23), pp. 101-106. https://doi.org/10.14498/vsgtu947

Wildemann V.E., Ilyinykh A.V. Simulation of structural failure and scale effects of softening at the post-critical deformation stage in heterogeneous media. Fiz. mezomekh. – Physical Mesomechanics, 2007, vol. 10, no. 4, pp. 23-29.

Ilinykh A.V., Vildeman V.E. Modeling of structure and failure processes of granular composites. Vychisl. mekh. splosh.

sred – Computational Continuum Mechanics, 2012, vol. 5, no. 4, pp. 443-451. https://doi.org/10.7242/1999-6691/2012.5.4.52

Mullahmetov M.N., Ilinykh A.V. Numerical simulation of the process of destruction of sequentially and parallel associated fibers. Master’s Journal, 2020, no. 1, pp. 9-26.

Vil’deman V.E., Tretyakov M.P. Material testing by plotting total deformation curves. J. Mach. Manuf. Reliab., 2013, vol. 42, pp. 166-170. https://doi.org/10.3103/S1052618813010159

Tsepennikov M.V., Smetannikov O.Yu., Povyshev I.A. Parameters identification numerical techniques calculation of fracture structures of composite materials. Fundamental’nyye i prikladnyye problemy tekhniki i tekhnologii – Fundamental and Applied Problems of Technics and Technology, 2015, no. 2, pp. 46-53.

Tsepennikov M.V., Strom A.A., Povyshev I.A., Smetannikov O.Yu. Theoretical-experimental study of mechanical behavior in 3D composites under quasi-steady damage. Vestnik PNIPU. Mekhanika – PNRPU Mechanics Bulletin, 2016, no. 2, pp. 143-158. https://doi.org/10.15593/perm.mech/2016.2.10

Tsepennikov M.V., Povyshev I.A., Smetannikov O.Yu. Verification of numerical technique for composite structures failure modeling. Vestnik PNIPU. Prikladnaya matematika i mekhanika – Applied Mathematics and Control Sciences, 2012, no. 10, pp. 225-241.

Stepanov G.V., Shirokov A.V. Modeling of crack propagation kinetics. Strength Mater., 2010, vol. 42, pp. 426-431. https://doi.org/10.1007/s11223-010-9233-1

Feklistova E.V., Tretyakov M.P., Wildemann V.E. Numerical implementation issues of the deformation and destruction process of bodies with stress concentratorsю AIP Conf. Proc., 2021, vol. 2371, 050002. https://doi.org/10.1063/5.0059553

Anoshkin A.N. Neuprugoye deformirovaniye i prochnost’ odnonapravlennykh kompozitov pri prodol’nom sdvige [Inelastic deformation and strength of unidirectional composites under longitudinal shear]. Vestnik PGTU. Matematicheskoye modelirovaniye sistem i protsessov – Vestnik PNIPU. Mekhanika, 1995, no. 3, pp. 4-10.

Boyce B.L., Kramer S.L.B., Fang H.E. et al. The Sandia Fracture Challenge: Blind round robin predictions of ductile tearing. Int. J. Fract., 2014, vol. 186, pp. 5-68. https://doi.org/10.1007/s10704-013-9904-6

Hedayati Dezfuli F., Alam M.S. Sensitivity analysis of carbon fiber reinforced elastomeric isolators based on experimental tests and finite element simulations. Bull. Earthquake Eng., 2014, vol. 12, pp. 1025-1043. https://doi.org/10.1007/s10518-013-9556-y

Kozlov M.V., Sheshenin S.V. Modeling the Progressive Failure of Laminated Composites // Mech. Compos. Mater., 2016, vol. 51, pp. 695–706. https://doi.org/10.1007/s11029-016-9540-0

Renev S.A., Shelofast V.V. The method of solving the problems of strength and fracture toughness using the modified function "birth and death" for three modes of deformation at the tip of a crack. Morskiye intellektual’nyye tekhnologii – Marine Intellectual Technologies, 2017, no. 4-3 (38), pp. 72-78.

Korolev I.K., Petinov S.V., Freidin A.B. Numerical simulation of damage accumulation and fatigue crack growth in elastic materials. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2009, vol. 2, no. 3, pp. 34-43. https://doi.org/10.7242/1999-6691/2009.2.3.21

Shabley A.A., Sapozhnikov S.B., Shipulin L.V. Estimated evaluation of the softening kinetics of laminates based on stochastic micro-meso modeling. Vestnik YuUrGU. Seriya Mashinostroyeniye – Bulletin of the South Ural State University. Series “Mechanical Engineering Industry”, 2017, vol. 17, no. 4, pp. 59-69. https://doi.org/10.14529/engin170406

Kryzhevich G.B., Filatov A.R. Numerical simulation of elastic-plastic strain of ice belt grillage of offshore ice resistant platform and comparison with full-scale experiment. Trudy Tsentral’nogo nauchno-issledovatel’skogo instituta im. akademika A.N. Krylova – Transactions of the Krylov State Research Centre, 2015, no. 86(370), pp. 125-132.

Novoselov A.V., Vildeman V.E. Structural failure behavior research for the planar stressed plates based on numerical modeling. Vestnik PNIPU. Mekhanika – PNRPU Mechanics Bulletin, 2012, no. 4, pp. 66-78.

Sokolkin Yu.V., Vil’deman V.E., Zaitsev A.V., Rochev I.N. Structural damage accumulation and stable postcritical deformation of composite materials. Mech. Compos. Mater., 1998, vol. 34, pp. 171-183. https://doi.org/10.1007/BF02256036

Bartolomei M.L., Trufanov N.A. O primenenii paketa ANSYS dlya issledovaniya deformirovaniya zdaniya s uchetom treshchinoobrazovaniya [On application of ANSYS package for building deformation study taking into account crack formation]. Vestnik PGTU. Mekhanika – PNRPU Mechanics Bulletin, 2009, no. 1, pp. 15-20.

Shaban B.A., Zuzov V.N. Osobennosti modelirovaniya karkasnykh elementov kuzovov i kabin avtomobiley pri issledovanii passivnoy bezopasnosti [Features of wireframe modeling bodies and cabs of cars while investigating passive safety]. Nauka i obrazovaniye: nauchnoye izdaniye MGTU im. N.E. Baumana – Science and education of Bauman MSTU, 2012, no. 11, pp. 81-104. https://doi.org/10.7463/1112.0486675

Liu Yi., Zuzov V.N. Study of the effect of finite element dimensions on the simulation accuracy of adhesive bonding in automotive structures. Izvestiya MGTU MAMI, 2021, vol. 15, no. 3, pp. 31-41. https://doi.org/10.31992/2074-0530-2021-49-3-31-41

Shaban B.A., Zuzov V.N. Osobennosti postroyeniya konechno-elementnykh modeley kabin dlya issledovaniya passivnoy bezopasnosti pri udare v sootvetstvii s pravilami EEK OON №29 [Features of building finite element models of cabins for passive safety studies under the impact according to UNECE Regulations No. 29]. Nauka i obrazovaniye: nauchnoye izdaniye MGTU im. N.E. Baumana – Science and education of Bauman MSTU, 2013, no. 3, pp. 129-156. https://doi.org/10.7463/0313.0542301

Lopes B., Arruda M.R.T., Almeida-Fernandes L., Castro L., Silvestre N., Correia J.R. Assessment of mesh dependency in the numerical simulation of compact tension tests for orthotropic materials. Composites Part C: Open Access, 2020, vol. 1, 100006. https://doi.org/10.1016/j.jcomc.2020.100006

Monforte L., Ciantia M.O., Carbonell J.M., Arroyo M., Gens A. A stable mesh-independent approach for numerical modelling of structured soils at large strains. Computers and Geotechnics, 2019, vol. 116, 103215. https://doi.org/10.1016/j.compgeo.2019.103215

Galavi V., Schweiger H.F. Nonlocal multilaminate model for strain softening analysis. Int. J. Geomech., 2010, vol. 10, pp. 30 44. https://doi.org/10.1061/(ASCE)1532-3641(2010)10:1(30)

Kurguzov V.D. Selection of finite-element mesh parameters in modeling the growth of hydraulic fracturing cracks. J. Appl. Mech. Tech. Phy., 2016, vol. 57, pp. 1198-1207. https://doi.org/10.1134/S0021894416070087

Smetannikov O.Yu., Kashnikov Yu.A., Ashihmin S.G., Shustov D.V. Numerical model of crack growth in hydraulic re-fracturing. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2015, vol. 8, no. 2, pp. 208-218. https://doi.org/10.7242/1999-6691/2015.8.2.18

Kasparova E.A., Shushpannikov P.S. Numerical and analytical methods for simulation of growth and interaction of cracks. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2018, vol. 11, no. 1, pp. 79-91. https://doi.org/10.7242/1999-6691/2018.11.1.7

Pour A.E., Afrazi M., Golshani A. Experimental study of the effect of length and angle of cross-cracks on tensile strength of rock-like material. Iran. J. Sci. Technol. Trans. Civ. Eng., 2022, vol. 46, pp. 4543-4556. https://doi.org/10.1007/s40996-022-00891-0

Xiao D., Yang W., Liu C., Hu R. Testing of mode-I fracture toughness of sandstone based on the fracturing mechanism of an explosion stress wave. Rock Mech. Rock Eng., 2022, vol. 55, pp. 7731-7745. https://doi.org/10.1007/s00603-022-03047-8

Liu P., Liu Q., Huang X., Hu M., Bo Y., Yuan D., Xie X. Direct tensile test and FDEM numerical study on anisotropic tensile strength of kangding slate. Rock Mech. Rock Eng., 2022, vol. 55, pp. 7765-7789. https://doi.org/10.1007/s00603-022-03036-x

Vasil’ev V.V., Lurie S.A., Salov V.A. Determination of the load that causes the appearance of plastic deformation in a tensile plate with a crack. Mech. Solids, 2020, vol. 55, pp. 490-495. https://doi.org/10.3103/S0025654420040147

Vasil’ev V.V., Lurie S.A., Salov V.A. A new solution to the problem of a crack in a stretchable orthotropic plate. Mech. Solids, 2021, vol. 56, pp. 902-910. https://doi.org/10.3103/S0025654421060200

Published

2023-12-01

Issue

Section

Articles

How to Cite

Wildemann, V. E., Feklistova, E. V., Mugatarov, A. I., Mullahmetov , M. N., & Kuchukov, A. M. (2023). Aspects of numerical simulation of failure of elastic-brittle solids. Computational Continuum Mechanics, 16(4), 420-429. https://doi.org/10.7242/1999-6691/2023.16.4.35