Behavior of a flexible mesh plate placed in an electrostatic field
DOI:
https://doi.org/10.7242/1999-6691/2023.16.3.33Keywords:
carbon nano-plate, mesh plate, modified moment theory, electrostatics, non-linear oscillations, natural frequenciesAbstract
The object of study is a flexible mesh plate with clamped edges. A stationary electrode is arranged in parallel with the plate at some distance from it. The electric field between the plate and electrode with a given potential difference is created by an external source. The plate is attracted (deflected) towards the electrode and comes in equilibrium when a balance between the electric (Coulomb force) and elastic forces is reached. When the potential difference increases, the plate moves to a new equilibrium position. The state equations of a geometrically nonlinear plate and boundary conditions based on the Kirchhoff hypotheses are derived from the Ostrogradsky–Hamilton variational principle. An isotropic, homogeneous material is considered. The scale effects are taken into account by means of the couple stress theory. It is assumed that the fields of displacement and rotation are not independent. Geometric nonlinearity is taken into account according to Von Karman’s theory. The mesh structure of the plate was modeled using the continuum theory developed by G. I. Pshenichny, which made it possible to replace the system of regular ribs by a continuous layer. Based on equilibrium conditions for a rectangular element, the relations between stresses arising in an equivalent smooth plate and stresses in the ribs were derived. The Lagrange multiplier method was used to determine the mesh plate physical ratios. The Bubnov–Galerkin method was applied to numerically solve a system of differential equations describing the nonlinear oscillations of the mesh plate under consideration. The mathematical model, solution algorithm and software package were verified by comparing the author's calculation results with the full-scale experiment data and with the results obtained by other authors. The paper investigates the influence of plate mesh structure geometry, constant voltage value, and geometric non-linearity on the natural frequency of the clamped plate. Numerical results are given for the graphene plate.
Downloads
References
Zaporotskova I.V., Boroznina N.P., Parkhomenko Y.N., Kozhitov L.V. Carbon nanotubes: Sensor properties. A review. Mod. Electron. Mater., 2016, vol. 2, pp. 95-105. https://doi.org/10.1016/j.moem.2017.02.002
Meyyappan M. Carbon nanotube-based chemical sensor. Small, 2016, vol. 12, pp. 2118-2129. https://doi.org/10.1002/smll.201502555
Ionete E.I., Spiridon S.-I., Monea B.F., Ebrasu-Ion D., Vaseashta A. SWCNT-Pt-P2O5-based sensor for humidity measurements. IEEE Sensor J., 2016, vol. 16, pp. 7593-7599. https://doi.org/10.1109/JSEN.2016.2603478
Ionete E.I., Spiridon S.-I., Monea B.F., Stratulat E. A room temperature gas sensor based on sulfonated SWCNTs for the detection of NO and NO2. Sensors, 2019, vol. 19, 1116. https://doi.org/10.3390/s19051116
Sinha N., Ma J., Yeow J.T.W. Carbon nanotube-based sensors. JNN, 2006, vol. 6, pp. 573-590. https://doi.org/10.1166/jnn.2006.121
Yu C., Liu Q., He Z., Gao X., Wu E., Guo J., Zhou C., Feng Z. Epitaxial graphene gas sensors on SiC substrate with high sensitivity. J. Semicond., 2020, vol. 41, 032101. https://doi.org/10.1088/1674-4926/41/3/032101
Dong Q., Xiao M., Li G., Zhang Y. Recent progress of toxic gas sensors based on 3d graphene frameworks. Sensors, 2021, vol. 21, 3386. https://doi.org/10.3390/s21103386
Wei L., Kuai X., Bao Y., Wei J., Yang L., Song P., Zhang M., Yang F., Wang X. The recent progress of MEMS/NEMS resonators. Micromachines, 2021, vol. 12, 724. https://doi.org/10.3390/mi12060724
Geim A.K., Novoselov K.S. The rise of graphen. Nature Mater., 2007, vol. 6, pp. 183-191. https://doi.org/10.1038/nmat1849
Bernholc J., Brenner D., Buongiorno Nardelli M., Meunier V., Roland C. Mechanical and electrical properties of nanotubes. Annu. Rev. Mater. Res., 2002, vol. 32, pp. 347-375. https://doi.org/10.1146/annurev.matsci.32.112601.134925
Fukuda T., Arai F., Dong L. Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations. Proc. IEEE, 2003, vol. 91, pp. 1803-1818. https://doi.org/10.1109/JPROC.2003.818334
De Volder M.F.L., Tawfick S.H., Baughman R.H., Hart A.J. Carbon nanotubes: Present and future commercial applications. Science, 2013, vol. 339, pp. 535-539. https://doi.org/10.1126/science.1222453
Verbiest G.J., Kirchhof J.N., Sonntag J., Goldsche M., Khodkov T., Stampfer C. Detecting ultrasound vibrations with graphene resonators. Nano Lett., 2018, vol. 18, pp. 5132-5137. https://doi.org/10.1021/acs.nanolett.8b02036
Monea B.F., Ionete E.I., Spiridon S.I., Ion-Ebrasu D., Petre E. Carbon nanotubes and carbon nanotube structures used for temperature measurement. Sensors, 2019, vol. 19, 2464. https://doi.org/10.3390/s19112464
Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P. Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solid., 2003, vol. 51, pp. 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
Chong A.C.M., Yang F., Lam D.C.C., Tong P. Torsion and bending of micron-scaled structures. J. Mater. Res., 2001, vol. 16, pp. 1052-1058. https://doi.org/10.1557/JMR.2001.0146
Stolken J.S., Evans A.G. A microbend test method for measuring the plasticity length scale. Acta Mater., 1998, vol. 46, pp. 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0
Cosserat E., Cosserat F. Theorie des corps deformables [Theory of deformable bodies]. Paris: A. Herman Sons, 1909. 250 p.
Mindlin R.D., Tiersten H.F. Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal., 1962, vol. 11, pp. 415 448.
Toupin R.A. Elastic materials with couple-stresses. Arch. Ration. Mech. Anal., 1962, vol. 11, pp. 385-414.
Koiter W.T. Couples-stress in the theory of elasticity. Proc. K. Ned. Akad. Wet., 1964, vol. 67, pp. 17-44.
Eringen A.C. Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci., 1972, vol. 10, pp. 425-435.
Eremeev V.A., Zubov L.M. Mekhanika uprugih obolochek [Mechanics of elastic shells]. Moscow, Nauka, 2008. 286 p.
Altenbach H., Eremeyev V.A. On the linear theory of micropolar plates. ZAMM, 2009, vol. 89, pp. 242-256. https://doi.org/10.1002/zamm.200800207
Nuhu A.A., Safaei B. A comprehensive review on the vibration analyses of small-scaled plate-based structures by utilizing the nonclassical continuum elasticity theories. Thin-Walled Structures, 2022, vol. 179, 109622. https://doi.org/10.1016/j.tws.2022.109622
Mozhgova N., Lukin A., Popov I. Model of a micromechanical modal-localized accelerometer with an initially curvedmicrobeam as a sensitive element. Microactuators, Microsensors and Micromechanisms, ed. A.K. Pandey, P. Pal, Nagahanumaiah, L. Zentner. Springer Cham, 2022. Pp. 94-118. https://doi.org/10.1007/978-3-031-20353-4_7
Morozov N.F., Indeitsev D.A., Igumnova V.S., Lukin A.V., Popov I.A., Shtukin L.V. Nonlinear dynamics of mode-localized MEMS accelerometer with two electrostatically coupled microbeam sensing elements. Int. J. Non Lin. Mech., 2022, vol. 138, 103852. https://doi.org/10.1016/j.ijnonlinmec.2021.103852
Ilyas S., Younis M.I. Theoretical and experimental investigation of mode localization in electrostatically and mechanically coupled microbeam resonators. Int. J. Non Lin. Mech., 2020, vol. 125, 103516. https://doi.org/10.1016/j.ijnonlinmec.2020.103516
Indeitsev D.A., Igumnova V.S., Lukin A.V., Popov I.A., Shtukin L.V., Belyaev Ya.V. Differential resonant MEMS accelerometer: Synchronization characteristics of weakly coupled microbeam sensing elements. http://dx.doi.org/10.13140/RG.2.2.36579.84004
Karimipour I., Beni Y.T., Akbarzadeh A.H. Size-dependent nonlinear forced vibration and dynamic stability of electrically actuated micro-plates. Comm. Nonlinear Sci. Numer. Simulat., 2019, vol. 78, 104856. https://doi.org/10.1016/j.cnsns.2019.104856
Karimipour I., Tadi Beni Y., Zeighampour H. Vibration and dynamic behavior of electrostatic size-dependent micro-plates. J. Braz. Soc. Mech. Sci. Eng., 2020, vol. 42, pp. 1-22. https://doi.org/10.1007/s40430-020-02490-4
Karami M., Kazemi A., Vatankhah R., Khosravifard A. Adaptive fractional-order backstepping sliding mode controller design for an electrostatically actuated size-dependent microplate. J. Vib. Contr., 2021, vol. 27, pp. 1353-1369. https://doi.org/10.1177/1077546320940916
Ghayesh M.H., Farokhi H. Nonlinear behaviour of electrically actuated microplate-based MEMS resonators. MSSP, 2018, vol. 109, pp. 220-234. https://doi.org/10.1016/j.ymssp.2017.11.043
Saghir S., Younis M.I. An investigation of the mechanical behavior of initially curved microplates under electrostatic actuation. Acta Mech., 2018, vol. 229, pp. 2909-2922. https://doi.org/10.1007/s00707-018-2141-3
Saghir S., Younis M.I. An investigation of the mechanical behavior of initially curved microplates under electrostatic actuation. Acta Mech., 2018, vol. 229, pp. 2909-2922. https://doi.org/10.1007/s00707-018-2141-3
Ghayesh M.H., Farokhi H. Nonlinear behaviour of electrically actuated microplate-based MEMS resonators. MSSP, 2018, vol. 109, pp. 220-234. https://doi.org/10.1016/j.ymssp.2017.11.043
Chen X., Chen L., Huang S., Li M., Li X. Nonlinear forced vibration of in-plane bi-directional functionally graded materials rectangular plate with global and localized geometrical imperfections. Appl. Math. Model., 2021, vol. 93, pp. 443-466. https://doi.org/10.1016/j.apm.2020.12.033
Li C., Chou T.W. Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B, 2003, vol. 68, 073405. https://doi.org/10.1103/PhysRevB.68.073405
Chen C., Rosenblatt S., Bolotin K.I., Kalb W., Kim P., Kymissis I., Stormer H.L., Heinz T.F., Hone J. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nature Nanotech., 2009, vol. 4, pp. 861-867. https://doi.org/10.1038/nnano.2009.267
Sadeghi M., Naghdabadi R. Nonlinear vibrational analysis of single-layer graphene sheets. Nanotechnology, 2010, vol. 21, 105705. https://doi.org/10.1088/0957-4484/21/10/105705
Kang J.W., Kim H.-W., Kim K.-S., Lee J.H. Molecular dynamics modeling and simulation of a graphene-based nanoelectromechanical resonator. Curr. Appl. Phys., 2013, vol. 13, pp. 789-794. https://doi.org/10.1016/j.cap.2012.12.007
Eriksson A.M., Midtvedt D., Croy A., Isacsson A. Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators. Nanotechnology, 2013, vol. 24, 395702. https://doi.org/10.1088/0957-4484/24/39/395702
Lee H.-L., Hsu J.-C., Lin S.-Y., Chang W.-J. Sensitivity analysis of single-layer graphene resonators using atomic finite element method. J. Appl. Phys., 2013, vol. 114, 123506. https://doi.org/10.1063/1.4823735
Jiang S., Gong X., Guo X., Wang X. Potential application of graphene nanomechanical resonator as pressure sensor. Solid State Comm., 2014, vol. 193, pp. 30-33. https://doi.org/10.1016/j.ssc.2014.05.020
Ansari R., Sahmani S., Arash B. Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys. Lett., 2010, vol. 375, pp. 53-62. https://doi.org/10.1016/j.physleta.2010.10.028
Zhang L.W., Zhang Y., Liew K.M. Modeling of nonlinear vibration of graphene sheets using a meshfree method based on nonlocal elasticity theory. Appl. Math. Model., 2017, vol. 49, pp. 691-704. https://doi.org/10.1016/j.apm.2017.02.053
Shen Z.-B., Tang H.-L., Li D.-K., Tang G.-J. Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory. Comput. Mater. Sci., 2012, vol. 61, pp. 200-205. https://doi.org/10.1016/j.commatsci.2012.04.003
Nematollahi M.S., Mohammadi H., Nematollahi M.A. Thermal vibration analysis of nanoplates based on the higher-order nonlocal strain gradient theory by an analytical approach. Superlattices Microst., 2017, vol. 111, pp. 944-959. https://doi.org/10.1016/j.spmi.2017.07.055
Ebrahimi F., Barati M.R. Vibration analysis of nonlocal strain gradient embedded single-layer graphene sheets under nonuniform in-plane loads. J. Vib. Contr., 2018, vol. 24, pp. 4751-4763. https://doi.org/10.1177/1077546317734083
Fazelzadeh S.A., Ghavanloo E. Nanoscale mass sensing based on vibration of single-layered graphene sheet in thermal environments. Acta Mech. Sin., 2014, vol. 30, pp. 84-91. https://doi.org/10.1007/s10409-013-0102-6
Ebrahimi F., Barati M.R. Damping vibration analysis of graphene sheets on viscoelastic medium incorporating hygro-thermal effects employing nonlocal strain gradient theory. Compos. Struct., 2018, vol. 185, pp. 241-253. https://doi.org/10.1016/j.compstruct.2017.10.021
Shahsavari D., Karami B., Li L. Damped vibration of a graphene sheet using a higher-order nonlocal strain-gradient Kirchhoff plate model. Compt. Rendus Méc., 2018, vol. 346, pp. 1216-1232. https://doi.org/10.1016/j.crme.2018.08.011
Ebrahimi F., Barati M.R. A nonlocal strain gradient mass sensor based on vibrating hygro-thermally affected graphene nanosheets. Iran. J. Sci. Technol. Trans. Mech. Eng., 2019, vol. 43, pp. 205-220. https://doi.org/10.1007/s40997-017-0131-z
Desai S.H., Pandya A.A., Panchal M.B. Vibration characteristics of graphene nano resonator as mass sensor. J. Phys.: Conf. Ser., 2021, vol. 1854, 012029. https://doi.org/10.1088/1742-6596/1854/1/012029
dell'Isola F., Steigman D. A Two-dimensional gradient-elasticity theory for woven fabrics. J. Elast., 2015, vol. 118, pp. 113-125. https://doi.org/10.1007/s10659-014-9478-1
Eremeyev V.A. A nonlinear model of a mesh shell. Mech. Solids, 2018, vol. 53, pp. 464-469. https://doi.org/10.3103/S002565441804012X
Krylova E.Yu., Papkova I.V., Saltykova O.A., Krysko V.A. Features of complex vibrations of flexible micropolar mesh panels. Izv. Sarat. Univ. Math. Mech. Inform., 2021, vol. 21, no. 1, pp. 48-59. https://doi.org/10.18500/1816-9791-2021-21-1-48-59
Krylova E.Yu., Papkova I.V., Yakovleva T.V., Krysko V.A. Theory of vibrations of carbon nanotubes like flexible micropolar mesh cylindrical shells taking into account shift. Izv. Sarat. Univ. Math. Mech. Inform., 2019, vol. 19, no. 3, pp. 305-316. https://doi.org/10.18500/1816-9791-2019-19-3-305-316
Karman Th. Festigkeits probleme in Maschinenbau [Strength problems in mechanical engineering]. Encykle. D. Math. Wiss., 1910, vol. 4, pp. 311-385.
Yang F., Chong A.C.M., Lam D.C.C., Tong P. Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct., 2002, vol. 39, pp. 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
Pshenichnov G.I. Teoriya tonkih uprugih setchatyh obolochek i plastinok [The theory of thin elastic mesh shells and plates]. Moscow, Nauka, 1982. 352 p.
Hamilton W. Report of the Fourth Meeting British Association for the Advancement of Science. 1835. P. 513-518.
Vol'mir A.S. Nelinejnaya dinamika plastinok i obolochek [Nonlinear dynamics of plates and shells]. Moscow, Nauka, 1972. 432 p.
Francais O., Dufour I. Normalized abacus for the global behavior of diaphragm: pneumatic, electrostatic, piezoelectric or electromagnetic actuation. J. Model Simul. Microsyst., 1999, vol. 2, pp. 149-160.
Papkova I.V., Yakovleva T.V. Nonlinear eigen frequencies of a functionally graded porous nano-beam with respect to the coulomb and Casimir forces. E3S Web of Conf., 2023, vol. 389, 01029. https://doi.org/10.1051/e3sconf/202338901029
Talebian S., Rezazadeh G., Fathalilou M., Toosi B. Effect of temperature on pull-in voltage and natural frequency of an electrostatically actuated microplate. Mechatronics, 2010, vol. 20, pp. 666-673. https://doi.org/10.1016/j.mechatronics.2010.07.009
Lee K.B. Closed-form solutions of the parallel plate problem. Sensors and Actuators A: Physical, 2007, vol. 133, pp. 518-525. https://doi.org/10.1016/j.sna.2006.04.049
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.