Behavior of a flexible mesh plate placed in an electrostatic field

Authors

DOI:

https://doi.org/10.7242/1999-6691/2023.16.3.33

Keywords:

carbon nano-plate, mesh plate, modified moment theory, electrostatics, non-linear oscillations, natural frequencies

Abstract

The object of study is a flexible mesh plate with clamped edges. A stationary electrode is arranged in parallel with the plate at some distance from it. The electric field between the plate and electrode with a given potential difference is created by an external source. The plate is attracted (deflected) towards the electrode and comes in equilibrium when a balance between the electric (Coulomb force) and elastic forces is reached. When the potential difference increases, the plate moves to a new equilibrium position. The state equations of a geometrically nonlinear plate and boundary conditions based on the Kirchhoff hypotheses are derived from the Ostrogradsky–Hamilton variational principle. An isotropic, homogeneous material is considered. The scale effects are taken into account by means of the couple stress theory. It is assumed that the fields of displacement and rotation are not independent. Geometric nonlinearity is taken into account according to Von Karman’s theory. The mesh structure of the plate was modeled using the continuum theory developed by G. I. Pshenichny, which made it possible to replace the system of regular ribs by a continuous layer. Based on equilibrium conditions for a rectangular element, the relations between stresses arising in an equivalent smooth plate and stresses in the ribs were derived. The Lagrange multiplier method was used to determine the mesh plate physical ratios. The Bubnov–Galerkin method was applied to numerically solve a system of differential equations describing the nonlinear oscillations of the mesh plate under consideration. The mathematical model, solution algorithm and software package were verified by comparing the author's calculation results with the full-scale experiment data and with the results obtained by other authors. The paper investigates the influence of plate mesh structure geometry, constant voltage value, and geometric non-linearity on the natural frequency of the clamped plate. Numerical results are given for the graphene plate.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при финансовой поддержке Российского научного фонда (проект № 22-21-00331) https://rscf.ru/project/22-21-00331.

References

Zaporotskova I.V., Boroznina N.P., Parkhomenko Y.N., Kozhitov L.V. Carbon nanotubes: Sensor properties. A review. Mod. Electron. Mater., 2016, vol. 2, pp. 95-105. https://doi.org/10.1016/j.moem.2017.02.002

Meyyappan M. Carbon nanotube-based chemical sensor. Small, 2016, vol. 12, pp. 2118-2129. https://doi.org/10.1002/smll.201502555

Ionete E.I., Spiridon S.-I., Monea B.F., Ebrasu-Ion D., Vaseashta A. SWCNT-Pt-P2O5-based sensor for humidity measurements. IEEE Sensor J., 2016, vol. 16, pp. 7593-7599. https://doi.org/10.1109/JSEN.2016.2603478

Ionete E.I., Spiridon S.-I., Monea B.F., Stratulat E. A room temperature gas sensor based on sulfonated SWCNTs for the detection of NO and NO2. Sensors, 2019, vol. 19, 1116. https://doi.org/10.3390/s19051116

Sinha N., Ma J., Yeow J.T.W. Carbon nanotube-based sensors. JNN, 2006, vol. 6, pp. 573-590. https://doi.org/10.1166/jnn.2006.121

Yu C., Liu Q., He Z., Gao X., Wu E., Guo J., Zhou C., Feng Z. Epitaxial graphene gas sensors on SiC substrate with high sensitivity. J. Semicond., 2020, vol. 41, 032101. https://doi.org/10.1088/1674-4926/41/3/032101

Dong Q., Xiao M., Li G., Zhang Y. Recent progress of toxic gas sensors based on 3d graphene frameworks. Sensors, 2021, vol. 21, 3386. https://doi.org/10.3390/s21103386

Wei L., Kuai X., Bao Y., Wei J., Yang L., Song P., Zhang M., Yang F., Wang X. The recent progress of MEMS/NEMS resonators. Micromachines, 2021, vol. 12, 724. https://doi.org/10.3390/mi12060724

Geim A.K., Novoselov K.S. The rise of graphen. Nature Mater., 2007, vol. 6, pp. 183-191. https://doi.org/10.1038/nmat1849

Bernholc J., Brenner D., Buongiorno Nardelli M., Meunier V., Roland C. Mechanical and electrical properties of nanotubes. Annu. Rev. Mater. Res., 2002, vol. 32, pp. 347-375. https://doi.org/10.1146/annurev.matsci.32.112601.134925

Fukuda T., Arai F., Dong L. Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations. Proc. IEEE, 2003, vol. 91, pp. 1803-1818. https://doi.org/10.1109/JPROC.2003.818334

De Volder M.F.L., Tawfick S.H., Baughman R.H., Hart A.J. Carbon nanotubes: Present and future commercial applications. Science, 2013, vol. 339, pp. 535-539. https://doi.org/10.1126/science.1222453

Verbiest G.J., Kirchhof J.N., Sonntag J., Goldsche M., Khodkov T., Stampfer C. Detecting ultrasound vibrations with graphene resonators. Nano Lett., 2018, vol. 18, pp. 5132-5137. https://doi.org/10.1021/acs.nanolett.8b02036

Monea B.F., Ionete E.I., Spiridon S.I., Ion-Ebrasu D., Petre E. Carbon nanotubes and carbon nanotube structures used for temperature measurement. Sensors, 2019, vol. 19, 2464. https://doi.org/10.3390/s19112464

Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P. Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solid., 2003, vol. 51, pp. 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X

Chong A.C.M., Yang F., Lam D.C.C., Tong P. Torsion and bending of micron-scaled structures. J. Mater. Res., 2001, vol. 16, pp. 1052-1058. https://doi.org/10.1557/JMR.2001.0146

Stolken J.S., Evans A.G. A microbend test method for measuring the plasticity length scale. Acta Mater., 1998, vol. 46, pp. 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0

Cosserat E., Cosserat F. Theorie des corps deformables [Theory of deformable bodies]. Paris: A. Herman Sons, 1909. 250 p.

Mindlin R.D., Tiersten H.F. Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal., 1962, vol. 11, pp. 415 448.

Toupin R.A. Elastic materials with couple-stresses. Arch. Ration. Mech. Anal., 1962, vol. 11, pp. 385-414.

Koiter W.T. Couples-stress in the theory of elasticity. Proc. K. Ned. Akad. Wet., 1964, vol. 67, pp. 17-44.

Eringen A.C. Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci., 1972, vol. 10, pp. 425-435.

Eremeev V.A., Zubov L.M. Mekhanika uprugih obolochek [Mechanics of elastic shells]. Moscow, Nauka, 2008. 286 p.

Altenbach H., Eremeyev V.A. On the linear theory of micropolar plates. ZAMM, 2009, vol. 89, pp. 242-256. https://doi.org/10.1002/zamm.200800207

Nuhu A.A., Safaei B. A comprehensive review on the vibration analyses of small-scaled plate-based structures by utilizing the nonclassical continuum elasticity theories. Thin-Walled Structures, 2022, vol. 179, 109622. https://doi.org/10.1016/j.tws.2022.109622

Mozhgova N., Lukin A., Popov I. Model of a micromechanical modal-localized accelerometer with an initially curvedmicrobeam as a sensitive element. Microactuators, Microsensors and Micromechanisms, ed. A.K. Pandey, P. Pal, Nagahanumaiah, L. Zentner. Springer Cham, 2022. Pp. 94-118. https://doi.org/10.1007/978-3-031-20353-4_7

Morozov N.F., Indeitsev D.A., Igumnova V.S., Lukin A.V., Popov I.A., Shtukin L.V. Nonlinear dynamics of mode-localized MEMS accelerometer with two electrostatically coupled microbeam sensing elements. Int. J. Non Lin. Mech., 2022, vol. 138, 103852. https://doi.org/10.1016/j.ijnonlinmec.2021.103852

Ilyas S., Younis M.I. Theoretical and experimental investigation of mode localization in electrostatically and mechanically coupled microbeam resonators. Int. J. Non Lin. Mech., 2020, vol. 125, 103516. https://doi.org/10.1016/j.ijnonlinmec.2020.103516

Indeitsev D.A., Igumnova V.S., Lukin A.V., Popov I.A., Shtukin L.V., Belyaev Ya.V. Differential resonant MEMS accelerometer: Synchronization characteristics of weakly coupled microbeam sensing elements. http://dx.doi.org/10.13140/RG.2.2.36579.84004

Karimipour I., Beni Y.T., Akbarzadeh A.H. Size-dependent nonlinear forced vibration and dynamic stability of electrically actuated micro-plates. Comm. Nonlinear Sci. Numer. Simulat., 2019, vol. 78, 104856. https://doi.org/10.1016/j.cnsns.2019.104856

Karimipour I., Tadi Beni Y., Zeighampour H. Vibration and dynamic behavior of electrostatic size-dependent micro-plates. J. Braz. Soc. Mech. Sci. Eng., 2020, vol. 42, pp. 1-22. https://doi.org/10.1007/s40430-020-02490-4

Karami M., Kazemi A., Vatankhah R., Khosravifard A. Adaptive fractional-order backstepping sliding mode controller design for an electrostatically actuated size-dependent microplate. J. Vib. Contr., 2021, vol. 27, pp. 1353-1369. https://doi.org/10.1177/1077546320940916

Ghayesh M.H., Farokhi H. Nonlinear behaviour of electrically actuated microplate-based MEMS resonators. MSSP, 2018, vol. 109, pp. 220-234. https://doi.org/10.1016/j.ymssp.2017.11.043

Saghir S., Younis M.I. An investigation of the mechanical behavior of initially curved microplates under electrostatic actuation. Acta Mech., 2018, vol. 229, pp. 2909-2922. https://doi.org/10.1007/s00707-018-2141-3

Saghir S., Younis M.I. An investigation of the mechanical behavior of initially curved microplates under electrostatic actuation. Acta Mech., 2018, vol. 229, pp. 2909-2922. https://doi.org/10.1007/s00707-018-2141-3

Ghayesh M.H., Farokhi H. Nonlinear behaviour of electrically actuated microplate-based MEMS resonators. MSSP, 2018, vol. 109, pp. 220-234. https://doi.org/10.1016/j.ymssp.2017.11.043

Chen X., Chen L., Huang S., Li M., Li X. Nonlinear forced vibration of in-plane bi-directional functionally graded materials rectangular plate with global and localized geometrical imperfections. Appl. Math. Model., 2021, vol. 93, pp. 443-466. https://doi.org/10.1016/j.apm.2020.12.033

Li C., Chou T.W. Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B, 2003, vol. 68, 073405. https://doi.org/10.1103/PhysRevB.68.073405

Chen C., Rosenblatt S., Bolotin K.I., Kalb W., Kim P., Kymissis I., Stormer H.L., Heinz T.F., Hone J. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nature Nanotech., 2009, vol. 4, pp. 861-867. https://doi.org/10.1038/nnano.2009.267

Sadeghi M., Naghdabadi R. Nonlinear vibrational analysis of single-layer graphene sheets. Nanotechnology, 2010, vol. 21, 105705. https://doi.org/10.1088/0957-4484/21/10/105705

Kang J.W., Kim H.-W., Kim K.-S., Lee J.H. Molecular dynamics modeling and simulation of a graphene-based nanoelectromechanical resonator. Curr. Appl. Phys., 2013, vol. 13, pp. 789-794. https://doi.org/10.1016/j.cap.2012.12.007

Eriksson A.M., Midtvedt D., Croy A., Isacsson A. Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators. Nanotechnology, 2013, vol. 24, 395702. https://doi.org/10.1088/0957-4484/24/39/395702

Lee H.-L., Hsu J.-C., Lin S.-Y., Chang W.-J. Sensitivity analysis of single-layer graphene resonators using atomic finite element method. J. Appl. Phys., 2013, vol. 114, 123506. https://doi.org/10.1063/1.4823735

Jiang S., Gong X., Guo X., Wang X. Potential application of graphene nanomechanical resonator as pressure sensor. Solid State Comm., 2014, vol. 193, pp. 30-33. https://doi.org/10.1016/j.ssc.2014.05.020

Ansari R., Sahmani S., Arash B. Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys. Lett., 2010, vol. 375, pp. 53-62. https://doi.org/10.1016/j.physleta.2010.10.028

Zhang L.W., Zhang Y., Liew K.M. Modeling of nonlinear vibration of graphene sheets using a meshfree method based on nonlocal elasticity theory. Appl. Math. Model., 2017, vol. 49, pp. 691-704. https://doi.org/10.1016/j.apm.2017.02.053

Shen Z.-B., Tang H.-L., Li D.-K., Tang G.-J. Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory. Comput. Mater. Sci., 2012, vol. 61, pp. 200-205. https://doi.org/10.1016/j.commatsci.2012.04.003

Nematollahi M.S., Mohammadi H., Nematollahi M.A. Thermal vibration analysis of nanoplates based on the higher-order nonlocal strain gradient theory by an analytical approach. Superlattices Microst., 2017, vol. 111, pp. 944-959. https://doi.org/10.1016/j.spmi.2017.07.055

Ebrahimi F., Barati M.R. Vibration analysis of nonlocal strain gradient embedded single-layer graphene sheets under nonuniform in-plane loads. J. Vib. Contr., 2018, vol. 24, pp. 4751-4763. https://doi.org/10.1177/1077546317734083

Fazelzadeh S.A., Ghavanloo E. Nanoscale mass sensing based on vibration of single-layered graphene sheet in thermal environments. Acta Mech. Sin., 2014, vol. 30, pp. 84-91. https://doi.org/10.1007/s10409-013-0102-6

Ebrahimi F., Barati M.R. Damping vibration analysis of graphene sheets on viscoelastic medium incorporating hygro-thermal effects employing nonlocal strain gradient theory. Compos. Struct., 2018, vol. 185, pp. 241-253. https://doi.org/10.1016/j.compstruct.2017.10.021

Shahsavari D., Karami B., Li L. Damped vibration of a graphene sheet using a higher-order nonlocal strain-gradient Kirchhoff plate model. Compt. Rendus Méc., 2018, vol. 346, pp. 1216-1232. https://doi.org/10.1016/j.crme.2018.08.011

Ebrahimi F., Barati M.R. A nonlocal strain gradient mass sensor based on vibrating hygro-thermally affected graphene nanosheets. Iran. J. Sci. Technol. Trans. Mech. Eng., 2019, vol. 43, pp. 205-220. https://doi.org/10.1007/s40997-017-0131-z

Desai S.H., Pandya A.A., Panchal M.B. Vibration characteristics of graphene nano resonator as mass sensor. J. Phys.: Conf. Ser., 2021, vol. 1854, 012029. https://doi.org/10.1088/1742-6596/1854/1/012029

dell'Isola F., Steigman D. A Two-dimensional gradient-elasticity theory for woven fabrics. J. Elast., 2015, vol. 118, pp. 113-125. https://doi.org/10.1007/s10659-014-9478-1

Eremeyev V.A. A nonlinear model of a mesh shell. Mech. Solids, 2018, vol. 53, pp. 464-469. https://doi.org/10.3103/S002565441804012X

Krylova E.Yu., Papkova I.V., Saltykova O.A., Krysko V.A. Features of complex vibrations of flexible micropolar mesh panels. Izv. Sarat. Univ. Math. Mech. Inform., 2021, vol. 21, no. 1, pp. 48-59. https://doi.org/10.18500/1816-9791-2021-21-1-48-59

Krylova E.Yu., Papkova I.V., Yakovleva T.V., Krysko V.A. Theory of vibrations of carbon nanotubes like flexible micropolar mesh cylindrical shells taking into account shift. Izv. Sarat. Univ. Math. Mech. Inform., 2019, vol. 19, no. 3, pp. 305-316. https://doi.org/10.18500/1816-9791-2019-19-3-305-316

Karman Th. Festigkeits probleme in Maschinenbau [Strength problems in mechanical engineering]. Encykle. D. Math. Wiss., 1910, vol. 4, pp. 311-385.

Yang F., Chong A.C.M., Lam D.C.C., Tong P. Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct., 2002, vol. 39, pp. 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X

Pshenichnov G.I. Teoriya tonkih uprugih setchatyh obolochek i plastinok [The theory of thin elastic mesh shells and plates]. Moscow, Nauka, 1982. 352 p.

Hamilton W. Report of the Fourth Meeting British Association for the Advancement of Science. 1835. P. 513-518.

Vol'mir A.S. Nelinejnaya dinamika plastinok i obolochek [Nonlinear dynamics of plates and shells]. Moscow, Nauka, 1972. 432 p.

Francais O., Dufour I. Normalized abacus for the global behavior of diaphragm: pneumatic, electrostatic, piezoelectric or electromagnetic actuation. J. Model Simul. Microsyst., 1999, vol. 2, pp. 149-160.

Papkova I.V., Yakovleva T.V. Nonlinear eigen frequencies of a functionally graded porous nano-beam with respect to the coulomb and Casimir forces. E3S Web of Conf., 2023, vol. 389, 01029. https://doi.org/10.1051/e3sconf/202338901029

Talebian S., Rezazadeh G., Fathalilou M., Toosi B. Effect of temperature on pull-in voltage and natural frequency of an electrostatically actuated microplate. Mechatronics, 2010, vol. 20, pp. 666-673. https://doi.org/10.1016/j.mechatronics.2010.07.009

Lee K.B. Closed-form solutions of the parallel plate problem. Sensors and Actuators A: Physical, 2007, vol. 133, pp. 518-525. https://doi.org/10.1016/j.sna.2006.04.049

Published

2023-10-21

Issue

Section

Articles

How to Cite

Krylova, E. Y. (2023). Behavior of a flexible mesh plate placed in an electrostatic field. Computational Continuum Mechanics, 16(3), 387-400. https://doi.org/10.7242/1999-6691/2023.16.3.33