Three-point bending of eccentric edge crack specimens under mixed mode loading
DOI:
https://doi.org/10.7242/1999-6691/2023.16.3.29Keywords:
fracture mechanics, mixed mode loading, three-point bend, Т -stress, finite element analysisAbstract
The occurrence of cracks in structural elements during their operation is due to the degradation of the material or the presence of hidden defects. Because of this, the structure can fail at lower external loads and before reaching its service life limit. As a rule, the failure of the structure caused by the growth of nucleated cracks develops under mixed loading. In this paper, to study such failure mechanism, a specimen of an eccentric beam of rectangular cross-section with a notch (crack) is investigated and its behavior is considered under asymmetric bend loading. Mixed strain modes I/II are obtained by shifting either the crack or the point of external load application. The finite element method was used to calculate stress intensity factors for I and II fracture modes, as well as -stresses for various geometrical parameters of the beam and loading conditions. The ratios of the crack length to the width of the beam and the length of the span to the width were varied. An analysis of known methods for calculating -stresses was carried out. The analysis showed that, in the finite element closest to the crack tip, there are strong oscillations of displacements, which are not described in the literature. Therefore, in order to find -stresses with the highest possible accuracy, it is suggested to determine them from displacements by cutting off 3–4 nodes closest to the crack tip. Experimental studies on the fracture toughness of spheroplast and polymethyl methacrylate in a mixed mode were performed. For each type of loading and beam geometry, 3–5 identical specimens were tested. The tests were carried out under static load until the complete fracture of the specimens. In all experiments, the crack initiation angle and the critical load were recorded. The direction of fracture and the critical load magnitude were predicted by applying a generalized maximum tensile stress criterion that takes into account the second (nonsingular) stress term in the Williams expansion. The results obtained demonstrate that the experimental and numerical values of critical loads are in good agreement. The error in determining the crack initiation angle does not exceed 5%.
Downloads
References
Suresh S., Shih C.F., Morrone A., O’Dowd N.P. Mixed-mode fracture toughness of ceramic materials. J. Am. Ceram. Soc., 1990, vol. 73, pp. 1257-1267. https://doi.org/10.1111/j.1151-2916.1990.tb05189.x
Fett T., Gerteisen G., Hahnenberger S., Martin G., Munz D. Fracture tests for ceramics under mode-I, mode-II and mixed-mode loading. J. Eur. Ceram. Soc., 1995, vol. 15, pp. 307-312. https://doi.org/10.1016/0955-2219(95)90353-K
Tikare V., Choi S.R. Combined mode I–mode II fracture of 12-mol%-ceria-doped tetragonal zirconia polycrystalline ceramic. J. Am. Ceram. Soc., 1997, vol. 80, pp. 1624-1626. https://doi.org/10.1111/j.1151-2916.1997.tb03030.x
Choi S.R., Zhu D., Miller R.A. Fracture behavior under mixed-mode loading of ceramic plasma-sprayed thermal barrier coatings at ambient and elevated temperatures. Eng. Fract. Mech., 2005, vol. 72, pp. 2144-2158. https://doi.org/10.1016/j.engfracmech.2005.01.010
Aliha M.R.M., Ayatollahi M.R. Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion. Int. J. Solids Struct., 2012, vol. 49, pp. 1877-1883. https://doi.org/10.1016/j.ijsolstr.2012.03.029
Li M., Sakai M. Mixed-mode fracture of ceramics in asymmetric four-point bending: Effect of crack-face grain interlocking/bridging. J. Am. Ceram. Soc., 1996, vol. 79, pp. 2718-2726. https://doi.org/10.1111/j.1151-2916.1996.tb09037.x
Ayatollahi M.R., Aliha M.R.M. Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion. Int. J. Solids Struct., 2009, vol. 46, pp. 311-321. https://doi.org/10.1016/j.ijsolstr.2008.08.035
Aliha M.R.M., Ayatollahi M.R. Geometry effects on fracture behaviour of polymethyl methacrylate. Mater. Sci. Eng., 2010, vol. 527, pp. 526-530. https://doi.org/10.1016/j.msea.2009.08.055
Araki W., Nemoto K., Adachi T., Yamaji A. Fracture toughness for mixed mode I/II of epoxy resin. Acta Mater., 2005, vol. 53, pp. 869-875. https://doi.org/10.1016/j.actamat.2004.10.035
He M.Y., Hutchinson J.W. Asymmetric four-point crack specimen. J. Appl. Mech., 2000, vol. 67, pp. 207-209. https://doi.org/10.1115/1.321168
Maccagno T.M., Knott J.F. The fracture behaviour of PMMA in mixed modes I and II. Eng. Fract. Mech., 1989, vol. 34, pp. 65-86. https://doi.org/10.1016/0013-7944(89)90243-9
Ayatollahi M.R., Shadlou S., Shokrieh M.M. Mixed mode brittle fracture in epoxy/multi-walled carbon nanotube nanocomposites. Eng. Fract. Mech., 2011, vol. 78, pp. 2620-2632. https://doi.org/10.1016/j.engfracmech.2011.06.021
Aliha M.R.M., Ayatollahi M.R., Smith D.J., Pavier M.J. Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng. Fract. Mech., 2010, vol. 77, pp. 2200-2212. https://doi.org/10.1016/j.engfracmech.2010.03.009
Erarslan N., Williams D.J. Mixed-mode fracturing of rocks under static and cyclic loading. Rock Mech. Rock Eng., 2013, vol. 46, pp. 1035-1052. https://doi.org/10.1007/s00603-012-0303-5
Aliha M.R.M., Hosseinpour G.R., Ayatollahi M.R. Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock Mech. Rock Eng., 2013, vol. 46, pp. 1023-1034. https://doi.org/10.1007/s00603-012-0325-z
Wang C., Zhu Z.M., Liu H.J. On the I–II mixed mode fracture of granite using four-point bend specimen. Fatig. Fract. Eng. Mater. Struct., 2016, vol. 39, pp. 1193-1203. https://doi.org/10.1111/ffe.12422
Ayatollahi M.R., Aliha M.R.M. Mixed mode fracture analysis of polycrystalline graphite – A modified MTS criterion. Carbon, 2008, vol. 46, pp. 1302-1308. https://doi.org/10.1016/j.carbon.2008.05.008
Mirsayar M.M., Berto F., Aliha M.R.M., Park P. Strain-based criteria for mixed-mode fracture of polycrystalline graphite. Eng. Fract. Mech., 2016, vol. 156, pp. 114-123. https://doi.org/10.1016/j.engfracmech.2016.02.011
Smetannikov O.Y., Kashnikov Y.A., Ashikhmin S.G., Kukhtinskiy A.E. Numerical model of fracture growth in hydraulic re-fracturing. Frattura ed Integrità Strutturale, 2019, vol. 49, pp. 140-155. https://doi.org/10.3221/IGF-ESIS.49.16
Mirsayar M.M., Park P. The role of T-stress on kinking angle of interface cracks. Mater. Des., 2015, vol. 80, pp. 12-19. https://doi.org/10.1016/j.matdes.2015.05.007
Lin Q., Bian X., Pan P.-Z., Gao Y., Lu Y. Criterion of local symmetry visualized in small eccentric single edge notched bend (E-SENB) rock specimens. Eng. Fract. Mech., 2021, vol. 248, 107709. https://doi.org/10.1016/j.engfracmech.2021.107709
Shahani A.R., Tabatabaei S.A. Effect of T-stress on the fracture of a four point bend specimen. Mater. Des., 2009, vol. 30, pp. 2630-2635. https://doi.org/10.1016/j.matdes.2008.10.031
Li Y., Dong S., Pavier M.J. Measurement of the mixed mode fracture strength of green sandstone using three-point bending specimens. Geomech. Eng., 2020, vol. 20, pp. 9-18. https://doi.org/10.12989/gae.2020.20.1.009
Efimov V.P. Brazilian tensile strength testing. J. Min. Sci., 2021, vol. 57, pp. 922-932. https://doi.org/10.1134/S1062739121060053
Ayatollahi M.R., Aliha M.R.M. Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading. Comput. Mater. Sci., 2007, vol. 38, pp. 660-670. https://doi.org/10.1016/j.commatsci.2006.04.008
Torabi A.R., Etesam S., Sapora A., Cornetti P. Size effects on brittle fracture of Brazilian disk samples containing a circular hole. Eng. Fract. Mech., 2017, vol. 186, pp. 496-503. https://doi.org/10.1016/j.engfracmech.2017.11.008
Margevicius R.W., Riedle J., Gumbsch P. Fracture toughness of polycrystalline tungsten under mode I and mixed mode I/II loading. Mater. Sci. Eng., 1999, vol. 270, pp. 197-209. https://doi.org/10.1016/S0921-5093(99)00252-X
Ravichandaran R., Thanigaiyarasu G. Mixed-mode fracture analysis of aluminum alloy 5083 subjected to four point bending. J. Appl. Sci., 2011, vol. 11, pp. 2214-2219. https://doi.org/10.3923/jas.2011.2214.2219
Maccagno T.M., Knott J.F. The low temperature brittle fracture behaviour of steel in mixed modes I and II. Eng. Fract. Mech., 1991, vol. 38, pp. 111-128. https://doi.org/10.1016/0013-7944(91)90076-D
Bhattacharjee D., Knott J.F. Ductile fracture in HY100 steel under mixed mode I/mode II loading. Acta Metall. Mater., 1994, vol. 42, pp. 1747-1754. https://doi.org/10.1016/0956-7151(94)90385-9
Pereira S.A.G., Tavares S.M.O., de Castro P.M.S.T. Mixed mode fracture: Numerical evaluation and experimental validation using PMMA specimens. Frattura ed Integrità Strutturale, 2019, vol. 49, pp. 412-428. https://doi.org/10.3221/IGF-ESIS.49.40
Zappalorto M., Salviato M., Quaresimin M. Mixed mode (I+II) fracture toughness of polymer nanoclay nanocomposites. Eng. Fract. Mech., 2013, vol. 111, pp. 50-64. https://doi.org/10.1016/j.engfracmech.2013.09.006
Mousavi S.S., Aliha M.R.M., Imani D.M. On the use of edge cracked short bend beam specimen for PMMA fracture toughness testing under mixed-mode I/II. Polymer Test., 2020, vol. 81, 106199. https://doi.org/10.1016/j.polymertesting.2019.106199
Williams M.L. On the stress distribution at the base of a stationary crack. J. Appl. Mech., 1957, vol. 24, pp. 109-114. https://doi.org/10.1115/1.4011454
MARC 2020. Volume A: Theory and User Information. MSC.Software Corporation, 2020. 1061 p.
Shih C.F., Asaro R. J. Elastic-plastic analysis of cracks on bimaterial interfaces: Part I – Small scale yielding. J. Appl. Mech., 1988, vol. 55, pp. 299-316. https://doi.org/10.1115/1.3173676
Wang X. Elastic T-stress for cracks in test specimens subjected to non-uniform stress distributions. Eng. Fract. Mech., 2002, vol. 69, pp. 1339-1352. https://doi.org/10.1016/S0013-7944(01)00149-7
Gupta M., Alderliesten R., Benedictus R. A review of T-stress and its effects in fracture mechanics. Eng. Fract. Mech., 2015, vol. 134, pp. 218-241. https://doi.org/10.1016/j.engfracmech.2014.10.013
Tyrymov A.A. Numerical simulation of T-stresses and stress biaxiality factor for a centrally cracked specimen under mixed boundary conditions. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2020, vol. 13, no. 4, pp. 393-401. https://doi.org/10.7242/1999-6691/2020.13.4.30
Ayatollahi M.R., Pavier M.J., Smith D.J. Determination of T-stress from finite element analysis for mode I and mixed mode I/II loading. Int. J. Fract., 1998, vol. 91, pp. 283-298. https://doi.org/10.1023/A:1007581125618
Wang X., Lewis T., Bell R. Estimations of the T-stress for small cracks at notches. Eng. Fract. Mech., 2006, vol. 73, pp. 366-375. https://doi.org/10.1016/j.engfracmech.2005.06.009
Nazarali Q., Wang X. The effect of T-stress on crack-tip plastic zones under mixed-mode loading conditions. Fatig. Fract. Eng. Mater. Struct., 2011, vol. 34, pp. 792-803. https://doi.org/10.1111/j.1460-2695.2011.01573.x
Acanfora M., Gallo P., Razavi S.M.J., Ayatollahi M.R., Berto F. Numerical evaluation of T-stress under mixed mode loading through the use of coarse meshes. Phys. Mesomech., 2018, vol. 21, pp. 124-134. https://doi.org/10.1134/S1029959918020054
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.