Building a complete solution to the problem of determining the bearing capacity of a flat reinforced rotating disk

Authors

DOI:

https://doi.org/10.7242/1999-6691/2023.16.3.25

Keywords:

rotating discs, fiber reinforcement, rigid-plastic model, second limiting state, bearing capacity, different-resistant, anisotropy, complete solution

Abstract

A complete solution to the problem of the second limiting state of flat reinforced discs rotating in the stationary regime is constructed. The structures are rigidly fixed to the inner contour (shaft mounted) and can have blades attached to the outer contour. The components of the composition are made of rigid-plastic materials and can have different tensile and compression yield stresses. The binder material of the disk can have cylindrical anisotropia. The characteristic feature of the reinforcement structures is the axial and radial symmetry. The mechanical behavior of the composition is described by the relations of the structural model that takes into account a two-dimensional stress state in all components. Smooth and piecewise-linear criteria for the yield stress of the disk material composition are investigated taking into account the heterogeneity of the structure of reinforcement structure and thickness variability. It is shown that in the general case of reinforcement, the problem of estimation of the bearing capacity of the composite discs is reduced to the numerical solution of one nonlinear functional equation for the threshold velocity of their rotation. For disks with radial, circular and radial-circular reinforcement structures, a complete solution to the problem is obtained in the analytical form. In this case, the orthotropic material of the binder obeys the associated flow rule determined by the modified Tresca–Hu yield criterion. For homogeneous discs of constant thickness, a comparison of the threshold angular velocities calculated for the first and second limiting state is carried out. It is shown that reinforcement of the disks considerably increases its bearing capacity compared to similar disk designs, which have the same mass but are made of traditional structural materials, in particular, high-strength steel. The highest bearing capacity of the discs is ensured by the radial-circular reinforcement. It is demonstrated that in the limiting state of the composite discs, a rigid circular region may appear in the vicinity of the internal contour.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена в рамках государственного задания (№ госрегистрации 121030900260-6).

References

Ponomarev S.D., Biderman V.L., Likharev K.K., Makushin V.M., Malinin N.N., Feodos′yev V.I. Raschety na prochnost′ v mashinostroyenii. T. III. Inertsionnyye nagruzki. Kolebaniya i udarnyye nagruzki. Vynoslivost′. Ustoychivost′ [Calculations for strength in mechanical engineering. Vol. III. Inertial loads. Vibrations and shock loads. Endurance. Sustainability]. Moscow, MASHGIZ, 1959. 1120 p.

Grigorenko Ya.M. Izotropnyye i anizotropnyye sloistyye obolochki vrashcheniya peremennoy zhestkosti [Isotropic and anisotropic layered shells of rotation of variable rigidity]. Kyiv, Naukova dumka, 1973. 228 p.

Birger I.A., Dem'yanushko I.V. Raschet na prochnost′ vrashchayushchikhsya diskov [Calculation for the strength of rotating disks]. Moscow, Mashinostroyeniye, 1978. 247 p.

Vasil′yev V.V., Tarnopol′skiy Yu.M. (ed.) Kompozitsionnyye materialy: Spravochnik [Composite materials: Handbook]. Moscow, Mashinostroyeniye, 1990. 512 p.

Lenard J., Haddow J.B. Plastic collapse speeds for rotating cylinders. Int. J. Mech. Sci., 1972, vol. 14, pp. 285-292. https://doi.org/10.1016/0020-7403(72)90084-7

Ma G., Hao H., Miyamoto Y. Limit angular velocity of rotating disc with unified yield criterion. Int. J. Mech. Sci., 2001, vol. 43, pp. 1137-1153. https://doi.org/10.1016/S0020-7403(00)00065-5

Tahania M., Nosier A., Zebarjad S.M. Deformation and stress analysis of circumferentially fiber-reinforced composite disks. Int. J. Solid. Struct., 2005, vol. 42, pp. 2741-2754. https://doi.org/10.1016/j.ijsolstr.2004.09.041

Koo K.-N. Mechanical vibration and critical speeds of rotating composite laminate disks. Microsyst. Technol., 2008, vol. 14, pp. 799-807. https://doi.org/10.1007/s00542-007-0555-2

Leu S.-Y., Hsu H.-C. Exact solutions for plastic responses of orthotropic strain-hardening rotating hollow cylinders. Int. J. Mech. Sci., 2010, vol. 52, pp. 1579-1587. https://doi.org/10.1016/j.ijmecsci.2010.07.006

Zheng Y., Bahaloo H., Mousanezhad D., Vaziri A., Nayeb-Hashemi H. Displacement and stress fields in a functionally graded fiber reinforced rotating disk with nonuniform thickness and variable angular velocity. J. Eng. Mater. Technol., 2017, vol. 139, 031010. https://doi.org/10.1115/1.4036242

Faghih S., Jahed H., Behravesh S.B. Variable material properties (VMP) approach: A review on twenty years of progress. J. Pressure Vessel Technol., 2018, vol. 140, 050803. https://doi.org/10.1115/1.4039068

Farukoğlu Ö.C., Korkut İ. On the elastic limit stresses and failure of rotating variable thickness fiber reinforced composite disk. ZAMM, 2021, vol. 101, e202000356. https://doi.org/10.1002/zamm.202000356

Malinin N.N. Prikladnaya teoriya plastichnosti i polzuchesti [Applied theory of plasticity and creep]. Moscow, Mashinostroyeniye, 1968. 400 p.

Weeton L.W., Scala E. (ed.) Composites: State of art. New York, Metallurgical Society of AIME, 1974. 365 p.

Lubin G. (ed.) Handbook of composites. New York, Van Nostrand Reinhold Company Inc., 1982. 786 p.

Karpinos D.M. (ed.) Kompozitsionnyye materialy. Spravochnik [Composite materials. Reference Book]. Kyiv, Naukova dumka, 1985. 592 p.

Ishlinskiy A.Yu., Ivlev D.D. Matematicheskaya teoriya plastichnosti [Mathematical theory of plasticity]. Moscow, Fizmatlit, 2011. 707 p.

Chakrabarty J. Applied plasticity. Springer, 2010. 774 p.

Nemirovsky Yu.V., Resnikov B.S. On limit equilibrium of reinforced slabs and effectiveness of their reinforcement. Arch. Inż. Ląd., 1975, vol. 21, no. 1, pp. 57-67.

Mróz Z., Shamiev F.G. Simplified yield condition for fiber-reinforced plates and shells. Arch. Inż. Ląd., 1979, vol. 25, no. 3, pp. 463-476.

Romanova T.P., Yankovskii A.P. Constructing yield loci for rigid-plastic reinforced plates considering the 2D stress state in fibers. Mech. Compos. Mater., 2019, vol. 54, pp. 697-718. https://doi.org/10.1007/s11029-019-9777-5

Romanova T.P., Yankovskii A.P. Piecewise-linear yield loci of angle-ply reinforced medium of different-resisting rigid-plastic materials at 2D stress state. Mech. Solids, 2020, vol. 55, pp. 1235-1252. https://doi.org/10.3103/S0025654420080221

Romanova T.P., Yankovskii A.P. Structural model for rigid-plastic yielding behavior of angle-ply reinforced composites of materials with different properties in tension and compression considering 2D stress state in all components. Mech. Adv. Mater. Struct., 2021, vol. 28, pp. 2151-2162. https://doi.org/10.1080/15376494.2020.1719561

Jones N., Ich N.T. The load carrying capacities of symmetrically loaded shallow shells. Int. J. Solids Struct., 1972, vol. 8, pp. 1339-1351. https://doi.org/10.1016/0020-7683(72)90083-2

Yerkhov M.I. Teoriya ideal′no plasticheskikh tel i konstruktsiy [Theory of ideally plastic bodies and structures]. Moscow, Nauka, 1978. 352 p.

Nemirovskiy Yu.V., Yankovskiy A.P. O nekotorykh osobennostyakh uravneniy obolochek, armirovannykh voloknami postoyannogo poperechnogo secheniya [Some features of the equations of shells reinforced with fibers of constant cross-section]. MKMK – Journal on Composite Mechanics and Design, 1997, vol. 3, no. 2, pp. 20-40.

Vanin G.A. Mikromekhanika kompozitnykh materialov [Micromechanics of composite materials]. Kyiv, Naukova dumka, 1985. 304 p.

Banichuk N.V., Kobelev V.V., Rikards R.B. Optimizatsiya elementov konstruktsiy iz kompozitsionnykh materialov [Optimization of structural elements made of composite materials]. Moscow, Mashinostroyeniye, 1988. 224 p.

Berezin I.S., Zhidkov N.P. Metody vychisleniy. T. 2 [Calculation methods. Vol. 2]. Moscow, Fizmatgiz, 1959. 620 p.

Dekker K., Verwer J.G. Stability of Runge–Kutta methods for stiff nonlinear differential equation. Amsterdam-New York-Oxford, North-Holland, 1984. 307 p.

Berezin I.S., Zhidkov N.P. Metody vychisleniy. T. 1 [Calculation methods. Vol. 1]. Moscow, Fizmatgiz, 1966. 632 p.

Petrovskiy I.G. Lektsii po teorii obyknovennykh differentsial′nykh uravneniy [Lectures on the theory of ordinary differential equations]. Moscow, Fizmatgiz, 1970. 279 p.

Malmeister A.K., Tamuzh V.P., Teters G.A. Soprotivleniye zhestkikh polimernykh materialov [Resistance of rigid polymeric materials]. Riga, Zinatne, 1972. 500 p.

Kurosh A.G. Kurs vysshey algebry [Higher algebra course]. Moscow, Fizmatgiz, 1959. 431 p.

Hu L.W. Modified Tresks’s yield condition and associated flow rules for anisotropic materials and applications. J. Franclin Inst., 1958, vol. 265, pp. 187-204. https://doi.org/10.1016/0016-0032(58)90551-9

Il′yushin A.A. Trudy (1946–1966). T. 2. Plastichnost′ [Proceedings (1946–1966). Vol. 2. Plasticity]. Moscow, Fizmatlit, 2004. 480 p.

Published

2023-09-05

Issue

Section

Articles

How to Cite

Yankovskii, A. P. (2023). Building a complete solution to the problem of determining the bearing capacity of a flat reinforced rotating disk. Computational Continuum Mechanics, 16(3), 289-309. https://doi.org/10.7242/1999-6691/2023.16.3.25