Numerical simulation of aerodynamics of a standard fog collector

Authors

DOI:

https://doi.org/10.7242/1999-6691/2023.16.2.21

Keywords:

fog, fogwater, numerical simulation, aerodynamic collection efficiency

Abstract

To-day, fog collection is an alternative, actively developed method of obtaining water, which involves both natural and industrial sources of humid air. A fog collection system is based on creating an obstacle to the flow of fog using mesh materials. Moving droplets of water collide with the mesh fibers, stick together and drain into the gutter. For the general characteristics of such systems, the efficiency of aerodynamic collection is the determinant factor. This article is aimed at gaining more fundamental knowledge about the aerodynamic behavior of water aerosols during fog collection. To this end, the authors have developed a computational model of aerodynamics of a standard fog collector, which combines scales differing by four orders of magnitude. Each fiber of the grid is considered separately with an accuracy of 0.1 mm. The collector contains a two-layer grid and is several meters long and wide. The dependences of aerodynamic collection efficiency on the shading coefficient have been obtained and their maximum values have been determined at the speed of the incoming flow of 3–7 m/s. It is shown how the efficiency value will change when the calculation uses the flow velocity before or after passing through the collector or the total pressure. The total pressure difference has precise limits and does not depend on the location of the measurement near the collector. The vector field of flow velocities in the reservoir is calculated, and the angle of incidence of the flow is analyzed across the entire surface of the grid. At a dimensionless distance between the mesh layers of 50 or more, the efficiency of aerodynamic collection remains constant, and the velocity vector is equally directed relative to the surface of the layers. In this case, the air flow is perpendicular to the second layer of the mesh in the center of the standard fog collector, and nearby its edge it maintains the angle of incidence on the first layer.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при финансовой поддержке Керченского государственного морского технологического университета по контракту № 121032200168-6.

References

Ghosh R., Ganguly R. Harvesting water from natural and industrial fogs—opportunities and challenges. Droplet and spray transport: Paradigms and applications, ed. S. Basu, A. Agarwal, A. Mukhopadhyay, C. Patel. Springer, 2018. P. 237-266. https://doi.org/10.1007/978-981-10-7233-8_9

Schemenauer R.S., Cereceda P., Osses P. Fogquest: Fog water collection manual. Fogquest, 2005. 99 p. https://www.researchgate.net/publication/283364559

Beysens D. The formation of dew. Atmos. Res., 1995, vol. 39, pp. 215-237. https://doi.org/10.1016/0169-8095(95)00015-J

Shanyengana E.S., Sanderson R.D., Seely M.K., Schemenauer R.S. Operational paper testing greenhouse shade nets in collection of fog for water supply. Journal of Water Supply: Research and Technology-Aqua, 2003, vol. 52, pp. 237-241. https://doi.org/10.2166/aqua.2003.0023

Klemm O., Schemenauer R.S., Lummerich A., Cereceda P., Marzol V., Corell D., van Heerden J., Reinhard D., Gherezghiher T., Olivier J., Osses P., Sarsour J., Frost E., Estrela M.J., Valiente J.A., Fessehaye G.M. Fog as a fresh-water resource: Overview and perspectives. AMBIO, 2012, vol. 41, pp. 221-234. https://doi.org/10.1007/s13280-012-0247-8

Fessehaye M., Abdul-Wahab S.A., Savage M.J., Kohler T., Gherezghiher T., Hurni H. Fog-water collection for community use. Renew. Sustain. Energ. Rev., 2014, vol. 29, pp. 52-62. https://doi.org/10.1016/j.rser.2013.08.063

Domen J.K., Stringfellow W.T., Camarillo M.K., Gulati S. Fog water as an alternative and sustainable water resource. Clean Techn. Environ. Policy, 2014, vol. 16, pp. 235-249. https://doi.org/10.1007/s10098-013-0645-z

Ghosh R., Ray T.K., Ganguly R. Cooling tower fog harvesting in power plants – A pilot study. Energy, 2015, vol. 89, pp. 1018-1028. https://doi.org/10.1016/j.energy.2015.06.050

Dower S. Clouds on tap. SA Waterbulletin, 2002, vol. 28, pp. 15-17. https://journals.co.za/doi/pdf/10.10520/EJC115249

Popova Т.N., Ukolov А.I., Gavrilov N.I., Vasilenko K S., Pozdnyakov D.V. Science, education, youth: Development horizons. Proc. of the II National Scientific and Practical Conference, 19 March 2022, Kerch, Kerch State Maritime Technological University, 2022. Pp. 60-65. https://www.elibrary.ru/item.asp?id=48289733&pff=1

Azad M.A.K., Ellerbrok D., Barthlott W., Koch K. Fog collecting biomimetic surfaces: Influence of microstructure and wettability. Bioinspir. Biomim., 2015, vol. 10, 016004. https://doi.org/10.1088/1748-3190/10/1/016004

Bai H., Zhang C., Long Z., Geng H., Ba T., Fan Y., Yu C., Li K., Cao M., Jiang L. A hierarchical hydrophilic/hydrophobic cooperative fog collector possessing self-pumped droplet delivering ability. J. Mater. Chem. A, 2018, vol. 6, pp. 20966-20972. https://doi.org/10.1039/C8TA08267G

Zhou H., Zhang M., Li C., Gao C., Zheng Y. Excellent fog-droplets collector via integrative janus membrane and conical spine with micro/nanostructures. Small, 2018, vol. 14, 1801335. https://doi.org/10.1002/smll.201801335

Kim N.K., Kang D.H., Eom H., Kang H.W. Biomimetic fog harvesting surface by photo-induced micro-patterning of zinc-oxide silver hierarchical nanostructures. Appl. Surf. Sci., 2019, vol. 470, pp. 161-167. https://doi.org/10.1016/j.apsusc.2018.11.132

Azeem M., Noman M.T., Wiener J., Petru M., Louda P. Structural design of efficient fog collectors: A review. Environmental Technology and Innovation, 2020, vol. 20, 101169. https://doi.org/10.1016/j.eti.2020.101169

Bai H., Zhao T., Wang X., Wu Y., Li K., Yu C., Jiang L., Cao M. Cactus kirigami for efficient fog harvesting: Simplifying a 3D cactus into 2D paper art. J. Mater. Chem. A, 2020, vol. 8, pp. 13452-13458. https://doi.org/10.1039/D0TA01204A

Gurera D., Bhushan B. Optimization of bioinspired conical surfaces for water collection from fog. J. Colloid Interface Sci., 2019, vol. 551, pp. 26-38. https://doi.org/10.1016/j.jcis.2019.05.015

Shi W., Anderson M.J., Tulkoff J.B., Kennedy B.S., Boreyko J.B. Fog harvesting with harps. ACS Appl. Mater. Interfaces, 2018, vol. 10, pp. 11979-11986. https://doi.org/10.1021/acsami.7b17488

Ganesh V.A., Ranganath A.S., Baji A., Raut H.K., Sahay R., Ramakrishna S. Hierarchical structured electrospun nanofibers for improved fog harvesting applications. Macromol. Mater. Eng., 2017, vol. 302, 1600387. https://doi.org/10.1002/mame.201600387

Brown P.S., Bhushan B. Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil. Philos. Trans. R. Soc. A, 2016, vol. 374, 20160135. https://doi.org/10.1098/rsta.2016.0135

Szewczyk P.K., Knapczyk-Korczak J., Ura D.P., Metwally S., Gruszczyński A., Stachewicz U. Biomimicking wetting properties of spider web from Linothele megatheloides with electrospun fibers. Mater. Lett., 2018, vol. 233, pp. 211-214. https://doi.org/10.1016/j.matlet.2018.09.007

Schemenauer R.S., Cereceda P. A proposed standard fog collector for use in highelevation regions. JAMC, 1994, vol. 33, pp. 1313-1322. https://doi.org/10.1175/1520-0450(1994)033<1313:APSFCF>2.0.CO;2

De Dios Rivera J. Aerodynamic collection efficiency of fog water collectors. Atmos. Res., 2011, vol. 102, pp. 335-342. https://doi.org/10.1016/j.atmosres.2011.08.005

Park K.-C., Chhatre S.S., Srinivasan S., Cohen R.E. McKinley G.H. Optimal design of permeable fiber network structures for fog harvesting. Langmuir, 2013, vol. 29, pp. 13269-13277. https://doi.org/10.1021/la402409f

Rajaram M., Heng X., Oza M., Luo C. Enhancement of fog-collection efficiency of a Raschel mesh using surface coatings and local geometric changes. Colloid. Surface Physicochem. Eng. Aspect., 2016, vol. 508, pp. 218-229. https://doi.org/10.1016/j.colsurfa.2016.08.034

Regalado C.M., Ritter A. The design of an optimal fog water collector: A theoretical analysis. Atmos. Res., 2016, vol. 178 179, pp. 45-54. https://doi.org/10.1016/j.atmosres.2016.03.006

Fernandez D.M., Torregrosa A., Weiss-Penzias P.S., Zhang B.J., Sorensen D., Cohen R.E., McKinley G.H., Kleingartner J., Oliphant A., Bowman M. Fog water collection effectiveness: Mesh intercomparisons. Aerosol Air Qual. Res., 2018, vol. 18, pp. 270-283. https://doi.org/10.4209/aaqr.2017.01.0040

Montecinos S., Carvajal D., Cereceda P., Concha M. Collection efficiency of fog events. Atmos. Res., 2018, vol. 209, pp. 163 169. https://doi.org/10.1016/j.atmosres.2018.04.004

Holmes R., de Dios Rivera J., de la Jara E. Large fog collectors: New strategies for collection efficiency and structural response to wind pressure. Atmos. Res., 2015, vol. 51, pp. 236-249. https://doi.org/10.1016/j.atmosres.2014.06.005

Cao M., Ju J., Li K., Dou S., Liu K., Jiang L. Facile and large-scale fabrication of a cactus-inspired continuous fog collector. Adv. Funct. Mater., 2014, vol. 24, pp. 3235-3240. https://doi.org/10.1002/adfm.201303661

Heng X., Luo C. Bioinspired plate-based fog collectors. ACS Appl. Mater. Interfaces, 2014, vol. 6, pp. 16257-16266. https://doi.org/10.1021/am504457f

Lummerich A., Tiedemann K.J. Fog water harvesting on the verge of economic competitiveness. Erdkunde, 2011, vol. 65, pp. 305-306. https://doi.org/10.3112/erdkunde.2011.03.07

Azeem M., Guérin A., Dumais T., Caminos L., Goldstein R.E., Pesci A.I., de Dios Rivera J., Torres M.J., Wiener J., Campos J.L., Dumais J. Optimal design of multilayer fog collectors. ACS Appl. Mater. Interfaces, 2020, vol. 12, pp. 7736-7743. https://doi.org/10.1021/acsami.9b19727

Guo R., Bai Y., Pei X., Lai Z. Numerical investigation of aerodynamics and wake on biplane airfoils at high angles of attack. Int. J. Mech. Sci., 2021, vol. 205, 106606. https://doi.org/10.1016/j.ijmecsci.2021.106606

Mansouri Z., Belamadi R. The influence of inlet swirl intensity and hot-streak on aerodynamics and thermal characteristics of a high pressure turbine vane. CJA, 2021, vol. 34, pp. 66-78. https://doi.org/10.1016/j.cja.2020.12.036

Qi R., Ng D., Cormier B.R., Mannan M.S. Numerical simulations of LNG vapor dispersion in Brayton Fire Training Field tests with ANSYS CFX. Journal of Hazardous Materials, 2010, vol. 183, pp. 51-61. https://doi.org/10.1016/j.jhazmat.2010.06.090

Konovalov V.V., Lyubimova T.P. Numerical study of the effect of vibrations on the interaction in an ensemble of gas bubbles and solid particles in a liquid. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2019, vol. 12, no.1, pp. 48 56. https://doi.org/10.7242/1999-6691/2019.12.1.5

Carvajal D., Silva-Llanca L., Larraguibel D., González B. On the aerodynamic fog collection efficiency of fog water collectors via three-dimensional numerical simulations. Atmos. Res., 2020, vol. 245, 105123. https://doi.org/10.1016/j.atmosres.2020.105123

Yan X., Jiang Y. Numerical evaluation of the fog collection potential of electrostatically enhanced fog collector. Atmos. Res., 2021, vol. 248, 105251. https://doi.org/10.1016/j.atmosres.2020.105251

Mikhaylenko K.I. Investigation of сomputational meshes for modeling the air dynamics in a vortex tube channel by OpenFOAM software. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2022, vol. 15, no. 1, pp. 56-66. https://doi.org/10.7242/1999-6691/2022.15.1.5

Published

2023-07-18

Issue

Section

Articles

How to Cite

Ukolov, A. I., & Popova, T. N. (2023). Numerical simulation of aerodynamics of a standard fog collector. Computational Continuum Mechanics, 16(2), 242-255. https://doi.org/10.7242/1999-6691/2023.16.2.21