Dynamics of a clamped drop under translational vibrations

Authors

  • Aleksey Anatol’yevich Alabuzhev Institute of Continuous Media Mechanics UB RAS; Perm State University
  • Marina Anatol’yevna Pyankova Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2023.16.1.6

Keywords:

free oscillations, forced oscillations, translational vibrations, liquid drop, contact line dynamics, deformable interface

Abstract

The free and forced translational oscillations of an ideal liquid drop have been investigated. The drop was placed in a large-sized vessel filled with a liquid of different density. In equilibrium, the drop has the shape of a circular cylinder, and it is sandwiched between the lid and bottom of the vessel. The contact line-speed at the end plates is proportional to the deviation of the contact angle from its equilibrium value (the angle is formed by the corresponding plate and the undeformed cylindrical surface of the drop). The proportionality coefficient (the wetting or Hocking parameter) is different for each surface; it characterizes the force of interaction between the contact line and the solid surface, which leads to energy dissipation during its movement. This makes it possible to use the velocity potential to describe motion in the presence of a deformed interface between inviscid fluids. It is shown that the fundamental frequency of the translational mode of natural oscillations may not vanish in contrast to the case of equal wetting parameters. The energy dissipation is determined by the total contribution of these parameters, which makes it possible to vary the motion of the contact line over a wide range. The oscillation amplitude is proportional to the density difference of the liquids, i.e., at equal densities, the system moves as a whole. It has been found that both integer and non-integer harmonics of shape oscillations are excited due to different wetting parameters. The external vibrational force excites only even harmonics and, with identical surfaces, only they are present in the oscillation spectrum.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ (бюджетная тема № 121031700169-1) (собственные колебания) и гранта РФФИ (проект № 20-31-90104) (вынужденные колебания).

References

Holter N.J., Glasscock W.R. Vibrations of evaporating liquid drops. J. Acoust. Soc. Am., 1952, vol. 24, pp. 682-686. https://doi.org/10.1121/1.1906956

Miller C.A., Scriven L.E. The oscillations of a fluid droplet immersed in another fluid. J. Fluid Mech., 1968, vol. 32, pp. 417 435. https://doi.org/10.1017/S0022112068000832

Henderson D.M., Miles J.W. Surface-wave damping in a circular cylinder with a fixed contact line. J. Fluid Mech., 1994, vol. 275, pp. 285-299. http://dx.doi.org/10.1017/S0022112094002363

Kartavyh N.N., Shklyaev S.V. O parametricheskom rezonanse polutsilindricheskoy kapli na ostsilliruyushchey tverdoy podlozhke [About parametrical resonance of semicylindrical drop on oscillating solid plane]. Vestnik PGU. Fizika – Bulletin of Perm University. Physics, 2007, no. 1(6), pp. 23-28.

Ivantsov A.O. Acoustic oscillations of semispherical drop. Vestnik PGU. Fizika – Bulletin of Perm University. Physics, 2012, no. 3(21), pp. 16-23.

Alabuzhev A.A., Shklyaev S.V. Emission of acoustic waves by nonlinear drop oscillations. Phys. Fluids, 2007, vol. 19, 047102. https://doi.org/10.1063/1.2718492

Shklyaev S., Straube A.V. The impact of bubble diffusivity on confined oscillated bubbly liquid. Phys. Fluids, 2009, vol. 21, 063303. https://doi.org/10.1063/1.3157237

Shklyaev S. Janus droplet as a catalytic micromotor. EPL, 2015, vol. 110, 54002. https://doi.org/10.1209/0295-5075/110/54002

Bostwick J.B., Steen P.H. Dynamics of sessile drops. Part 1. Inviscid theory. J. Fluid Mech., 2014, vol. 760, pp. 5-38. https://doi.org/10.1017/jfm.2014.582

Chang C., Bostwick J., Daniel S., Steen P. Dynamics of sessile drops. Part 2. Experiment. J. Fluid Mech., 2015, vol. 768, pp. 442-467. https://doi.org/10.1017/jfm.2015.99

Klimenko L., Lyubimov D. Surfactant effect on the average flow generation near curved interface. Microgravity Sci. Technol., 2018, vol. 30, pp. 77-84. https://doi.org/10.1007/s12217-017-9577-2

Maryshev B.S., Parshakova Ya.N., Ivantsov А.О., Zubova N.А. Removal of pollution accumulated in the process of wastewater discharge from the bottom layer of river systems. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2022, vol. 15, no. 2, pp. 209-222. https://doi.org/10.7242/1999-6691/2022.15.2.16

Ding D., Bostwick J.B. Oscillations of a partially wetting bubble. J. Fluid Mech., 2022, vol. 945, A24. https://doi.org/10.1017/jfm.2022.584

Kim J. Spray cooling heat transfer: The state of the art. Int. J. Heat Fluid Flow, 2007, vol. 28, pp. 753-767. https://doi.org/10.1016/j.ijheatfluidflow.2006.09.003

Bhushan B., Jung Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci., 2011, vol. 56, pp. 1-108. https://doi.org/10.1016/j.pmatsci.2010.04.003

Liu W., Ren Y., Tao Y., Chen X., Yao B., Hui M., Bai L. Control of two-phase flow in microfluidics using out-of-phase electroconvective streaming. Phys. Fluids, 2017, vol. 29, 112002. https://doi.org/10.1063/1.5003973

Antonopoulou E., Harlen O.G., Walkley M.A., Kapur N. Jetting behavior in drop-on-demand printing: Laboratory experiments and numerical simulations. Phys. Rev. Fluids, 2020, vol. 5, 043603. https://doi.org/10.1103/PhysRevFluids.5.043603

De Ruiter R., Semprebon C., van Gorcum M., Duits M.H.G., Brinkmann M., Mugeleet F. Stability limits of capillary bridges: How contact angle hysteresis affects morphology transitions of liquid microstructures. Phys. Rev. Lett., 2015, vol. 114, 234501. https://doi.org/10.1103/PhysRevLett.114.234501

Oron A., Davis S.H., Bankoff S.G. Long-scale evolution of thin liquid films. Rev. Mod. Phys., 1997, vol. 69, pp. 931-980. https://doi.org/10.1103/RevModPhys.69.931

Samoilova A., Nepomnyashchy A. Longitudinal modulation of Marangoni wave patterns in thin film heated from below: Instabilities and control. Appl. Math. Stat., 2021, vol. 7, 697332. https://doi.org/10.3389/fams.2021.697332

Alabuzhev A.A., Volodin I.V. Linear instability of forced oscillations of a thin ferrofluid film in a vertical magnetic field. Microgravity Sci. Technol., 2022, vol. 34, 91. https://doi.org/10.1007/s12217-022-10014-z

Savenko O.A., Lebedev-Stepanov P.V. Quasi-stationary evaporation of a small liquid droplet on a flat substrate: Analytical solution in bipolar coordinates. Colloid J., 2022, vol. 84, pp. 312-320. https://doi.org/10.1134/S1061933X22030115

Ebril H.Y. Evaporation of pure liquid sessile and spherical suspended drops: A review. Adv. Colloid Interface Sci., 2012, vol. 170, pp. 67-86. https://doi.org/10.1016/j.cis.2011.12.006

Boinovich L., Emelyanenko A.M., Korolev V.V., Pashinin A.S. Effect of wettability on sessile drop freezing: when superhydrophobicity stimulates an extreme freezing delay. Langmuir, 2014, vol. 30, pp. 1659-1668. https://doi.org/10.1021/la403796g

Huh C., Scriven L.E. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci., 1971, vol. 35, pp. 85-101. https://doi.org/10.1016/0021-9797(71)90188-3

Hocking L.M. Sliding and spreading of thin two-dimensional drops. Q. J. Mech. Appl. Math., 1981, vol. 34, pp. 37-55. https://doi.org/10.1093/qjmam/34.1.37

Dussan V.E.B., Chow R.T.-P. On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. J. Fluid Mech., 1987, vol. 137, pp. 1-29. https://doi.org/10.1017/S002211208300227X

Dussan V.E.B. On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. Part 2. Small drops or bubbles having contact angles of arbitrary size. J. Fluid Mech., 1985, vol. 151, pp. 1-20. https://doi.org/10.1017/S0022112085000842

Dussan V.E.B. On the ability of drops to stick to surfaces of solids. Part 3. The influences of the motion of the surrounding fluid on dislodging drops. J. Fluid Mech., 1987, vol. 174, pp. 381-397. https://doi.org/10.1017/S002211208700017X

Young G.W., Davis S.H. A plate oscillating across a liquid interface: effects of contact-angle hysteresis. J. Fluid Mech., 1987, vol. 174, pp. 327-356. https://doi.org/10.1017/S0022112087000156

Snoeijer J.H., Andreotti B. A microscopic view on contact angle selection. Phys. Fluids, 2008, vol. 20, 057101. https://doi.org/10.1063/1.2913675

Du J., Chamakos N.T., Papathanasiou A.G., Min Q. Initial spreading dynamics of a liquid droplet: The effects of wettability, liquid properties, and substrate topography. Phys. Fluids, 2021, vol. 33, 042118. https://doi.org/10.1063/5.0049409

Ben Amar M., Cummings L.J., Pomeau Y. Transition of a moving contact line from smooth to angular. Phys. Fluids, 2003, vol. 15, pp. 2949-2960. https://doi.org/10.1063/1.1604778

Manor O., Pismen L.M. Effect of high-frequency in-plane substrate vibration on a three-phase contact angle. Phys. Fluids, 2015, vol. 27, 062101. https://doi.org/10.1063/1.4922054

Xu X., Di Y., Doi M. Variational method for liquids moving on a substrate. Phys. Fluids, 2016, vol. 28, 087101. https://doi.org/10.1063/1.4959227

Hocking L.M. The damping of capillary-gravity waves at a rigid boundary. J. Fluid Mech., 1987, vol. 179, pp. 253-266. http://dx.doi.org/10.1017/S0022112087001514

Demin V.A. Problem of the free oscillations of a capillary bridge. Fluid Dyn., 2008, vol. 43, pp. 524-532. http://dx.doi.org/10.1134/S0015462808040042

Alabuzhev A.A. Oscillations and parametric instability of a cylindrical drop of a low-viscous liquid. Int. J. Fluid Mech. Res., 2019, vol. 46, pp. 441-457. https://doi.org/10.1615/InterJFluidMechRes.2019025743

Alabuzhev A.A., Lyubimov D.V. Behavior of a cylindrical drop under multi-frequency vibration. Fluid Dyn., 2005, vol. 40, pp. 183-192. http://dx.doi.org/10.1007/s10697-005-0058-8

Lu Z., Preston D.J., Antao D.S., Zhu Y., Wang E.N. Coexistence of pinning and moving on a contact line. Langmuir, 2017, vol. 33, pp. 8970-8975. https://doi.org/10.1021/acs.langmuir.7b02070

Hocking L.M. Waves produced by a vertically oscillating plate. J. Fluid Mech., 1987, vol. 179, pp. 267-281. http://dx.doi.org/10.1017/S0022112087001526

Alabuzhev А.А., Kashina М.А. Influence of surface properties on axisymmetric oscillations of an oblate drop in an ac electric field. Radiophys. Quantum El., 2019, vol. 61, pp. 589-602. https://doi.org/10.1007/s11141-019-09919-4

Alabuzhev A.A. Influence of heterogeneous plates on the axisymmetrical oscillations of a cylindrical drop. Microgravity Sci. Technol., 2018, vol. 30, pp. 25-32. https://doi.org/10.1007/s12217-017-9571-8

Fayzrakhmanova I.S., Straube A.V. Stick-slip dynamics of an oscillated sessile drop. Phys. Fluids, 2009, vol. 21, 072104. https://doi.org/10.1063/1.3174446

Alabuzhev A.A., Kolupaev V.S. The effect of substrate surface on the dynamics of sessile drop under axisymmetric vibrations. Interfacial Phenomena and Heat Transfer, 2021, vol. 9, pp. 75-85. https://doi.org/10.1615/INTERFACPHENOMHEATTRANSFER.2021035378

Shklyaev S., Straube A.V. Linear oscillations of a hemispherical bubble on a solid substrate. Phys. Fluids, 2008, vol. 20, 052102. http://dx.doi.org/10.1063/1.2918728

Fayzrakhmanova I.S., Straube A.V., Shklyaev S. Bubble dynamics atop an oscillating substrate: Interplay of compressibility and contact angle hysteresis. Phys. Fluids, 2011, vol. 23, 102105. http://dx.doi.org/10.1063/1.3650280

Alabuzhev А.А. Translational oscillations of a cylindrical drop in a bounded volume of fluid. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2016, vol. 9, no. 4, pp. 453-465.

Alabuzhev A.A. Forced axisymmetric oscillations of a drop, which is clamped between different surfaces. Microgravity Sci. Technol., 2020, vol. 32, pp. 545-553. https://doi.org/10.1007/s12217-020-09783-2

Kashina M.A., Alabuzhev A.A. The forced oscillations of an oblate drop sandwiched between different inhomogeneous surfaces under ac vibrational force. Microgravity Sci. Technol., 2021, vol. 33, 35. https://doi.org/10.1007/s12217-021-09886-4

Alabuzhev A.A. Influence of surface properties on axisymmetrical oscillations of a cylindrical bubble. Interfacial Phenomena and Heat Transfer, 2019, vol. 7, pp. 255-268. https://doi.org/10.1615/InterfacPhenomHeatTransfer.2019031147

Alabuzhev А.А. Effect of the internal pressure on oscillations of a cylindrical gas bubble. Vestnik PGU. Fizika – Bulletin of Perm University. Physics, 2020, no. 4, pp. 51-62. https://doi.org/10.17072/1994-3598-2020-4-51-62

Zhang L., Thiessen D.B. Capillary-wave scattering from an infinitesimal barrier and dissipation at dynamic contact lines. J. Fluid Mech., 2013, vol. 719, pp. 295-313. http://dx.doi.org/10.1017/jfm.2013.5

Ting C.-L., Perlin M. Boundary conditions in the vicinity of the contact line at a vertically oscillating upright plate: An experimental investigation. J. Fluid Mech., 1995, vol. 295, pp. 263-300. http://dx.doi.org/ 10.1017/S0022112095001960

Perlin M., Schultz W.W., Liu Z. High Reynolds number oscillating contact lines. Wave Motion, 2004, vol. 40, pp. 41-56. http://dx.doi.org/10.1016/j.wavemoti.2003.12.011

Alabuzhev A.A., Lyubimov D.V. Effect of the contact-line dynamics on the natural oscillations of a cylindrical droplet. J. Appl. Mech. Tech. Phys., 2007, vol. 48, pp. 686-693. http://dx.doi.org/10.1007/s10808-007-0088-6

Published

2023-04-18

Issue

Section

Articles

How to Cite

Alabuzhev, A. A., & Pyankova, M. A. (2023). Dynamics of a clamped drop under translational vibrations. Computational Continuum Mechanics, 16(1), 78-88. https://doi.org/10.7242/1999-6691/2023.16.1.6