On the sensitivity and reconstruction of 2D prestress state in a thin plate

Authors

  • Aleksandr Ovanesovich Vatulyan Southern Federal University; Southern Mathematical Institute, VSC RAS
  • Rostislav Dmitriyevich Nedin Southern Federal University

DOI:

https://doi.org/10.7242/1999-6691/2023.16.1.5

Keywords:

inverse problem, prestress, residual stress, plate, finite element method, iterative regularization, projection method

Abstract

Despite of the relevance of studies devoted to the identification of fully 2D or 3D nonhomogeneous prestress fields in solids based on a number of surface measurements using a nondestructive approach, there is still a lack of publications on this topic in literature. In the present paper, we continue to develop the methodology for nondestructive acoustical identification of inhomogeneous 2D residual stress state in a plate, the foundations of which have been laid and published by the authors in their early works. In the framework of the linearized boundary-value problem, we formulate and investigate the direct and inverse problems of in-plane vibrations of a prestressed thin plate. The variational and weak formulations of the direct problem are presented. A new iterative-regularized scheme is proposed for solving the inverse problem of identification of 2D residual stress state in a plate using the measurements of displacements on some part of the boundary in a given frequency range. This technique is based on the projection and finite-element methods and leads to solving an ill-conditioned algebraic system at each iteration. It makes it possible to use the results of a series of vibration tests performed by applying different types of loading. Numerical results of reconstruction of some 2D inhomogeneous residual stress states in a rectangular plate were obtained and analyzed. Additionally, the finite-element analysis of sensitivity of the prestress parameters to sounding load types was carried to formulate recommendations on the choice of sounding parameters for the most advantageous reconstruction procedure.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено за счет гранта Российского научного фонда № 18-71-10045 https://rscf.ru/project/18-71-10045/ в Южном федеральном университете.

References

James M.N. Residual stress influences on structural reliability // Eng. Fail. Anal. 2011. Vol. 18. P. 1909-1920. https://doi.org/10.1016/j.engfailanal.2011.06.005

Vaara J., Kunnari A., Frondelius T. Literature review of fatigue assessment methods in residual stressed state // Eng. Fail. Anal. 2020. Vol. 110. 104379. https://doi.org/10.1016/j.engfailanal.2020.104379

Rossini N.S., Dassisti M., Benyounis K.Y., Olabi A.G. Methods of measuring residual stresses in components // Materials and Design. 2012. Vol. 35. P. 572-588. https://doi.org/10.1016/j.matdes.2011.08.022

Guo J., Fu H., Pan B., Kang R. Recent progress of residual stress measurement methods: A review // Chin. J. Aeronaut. 2021. Vol. 34. P. 54-78. https://doi.org/10.1016/j.cja.2019.10.010

Lei Zh., Zou J., Wang D., Guo Zh., Bai R., Jiang H., Yan Ch. Finite-element inverse analysis of residual stress for laser welding based on a contour method // Optic. Laser Tech. 2020. Vol. 129. 106289. https://doi.org/10.1016/j.optlastec.2020.106289

Suresh S., Giannakopoulos A.E. A new method for estimating residual stresses by instrumented sharp indentation // Acta Mater. 1998. Vol. 46. P. 5755-5767. https://doi.org/10.1016/S1359-6454(98)00226-2

Greco A., Sgambitterra E., Furgiuele F. A new methodology for measuring residual stress using a modified Berkovich nano-indenter // Int. J. Mech. Sci. 2021. Vol. 207. 106662. https://doi.org/10.1016/j.ijmecsci.2021.106662

Jun T.-S., Korsunsky A.M. Evaluation of residual stresses and strains using the eigenstrain reconstruction method // Int. J. Solids Struct. 2010. Vol. 47. P. 1678-1686. https://doi.org/10.1016/j.ijsolstr.2010.03.002

Korsunsky A., Regino G., Nowell D. Variational determination of eigenstrain sources of residual stress // Proc. of the Int. Conf. on Computational and Experimental Engineering and Science. ICCES2004. Madeira, Portugal, July 26-29, 2004. P. 1717 1722.

Korsunsky A.M., Regino G.M., Nowell D. Variational eigenstrain analysis of residual stresses in a welded plate // Int. J. Solids Struct. 2007. Vol. 44. P. 4574-4591. https://doi.org/10.1016/j.ijsolstr.2006.11.037

Xu Y., Liu H., Bao R., Zhang X. Residual stress evaluation in welded large thin-walled structures based on eigenstrain analysis and small sample residual stress measurement // Thin-Walled Struct. 2018. Vol. 131. P. 782-791. https://doi.org/10.1016/j.tws.2018.07.049

Shokrieh M.M., Jalili S.M., Kamangar M.A. An eigen-strain approach on the estimation of non-uniform residual stress distribution using incremental hole-drilling and slitting techniques // Int. J. Mech. Sci. 2018. Vol. 148. P. 383-392. https://doi.org/10.1016/j.ijmecsci.2018.08.035

Naskar S., Banerjee B. A mixed finite element based inverse approach for residual stress reconstruction // Int. J. Mech. Sci. 2021. Vol. 196. 106295. https://doi.org/10.1016/j.ijmecsci.2021.106295

Hoger A. On the determination of residual stress in an elastic body // J. Elasticity. 1986. Vol. 16. P. 303-324. https://doi.org/10.1007/BF00040818

Holzapfel G.A., Gasser T.C., Ogden R.W. A new constitutive framework for arterial wall mechanics and a comparative study of material models // J. Elasticity. 2000. Vol. 61. P. 1-48. https://doi.org/10.1023/A:1010835316564

Gou K., Walton J.R. Reconstruction of nonuniform residual stress for soft hyperelastic tissue via inverse spectral techniques // Int. J. Eng. Sci. 2014. Vol. 82. P. 46-73. https://doi.org/10.1016/j.ijengsci.2014.05.004

Nedin R.D., Vatulyan A.O. Advances in modeling and identification of prestresses in modern materials // Advanced materials modelling for mechanical, medical and biological applications / Ed. H. Altenbach, V.A. Eremeyev, A. Galybin, A. Vasiliev. Springer, 2022. P. 357-374. https://doi.org/10.1007/978-3-030-81705-3_19

Nedin R.D., Vatulyan A.O. Concerning one approach to the reconstruction of heterogeneous residual stress in plate // ZAMM J. Appl. Math. Mech. 2014. Vol. 94. P. 142-149. https://doi.org/10.1002/zamm.201200195

Nedin R.D., Vatulyan A.O., Bogachev I.V. Direct and inverse problems for prestressed functionally graded plates in the framework of the Timoshenko model // Math. Meth. Appl. Sci. 2018. Vol. 41. P. 1600-1618. https://doi.org/10.1002/mma.4688

Nedin R.D., Vatulyan A.O. Inverse problem of non-homogeneous residual stress identification in thin plates // Int. J. Solids Struct. 2013. Vol. 50. P. 2107-2114. https://doi.org/10.1016/j.ijsolstr.2013.03.008

Nedin R., Dudarev V., Vatulyan A. Some aspects of modeling and identification of inhomogeneous residual stress // Eng. Struct. 2017. Vol. 151. P. 391-405. https://doi.org/10.1016/j.engstruct.2017.08.007

Tikhonov A.N., Arsenin V.Y. Solution of ill-posed problems. Halsted Press, 1977. 258 p.

Hecht F. New development in freefem++ // J. Numer. Math. 2012. Vol. 20. P. 251-265. https://doi.org/10.1515/jnum-2012-0013

Published

2023-04-18

Issue

Section

Articles

How to Cite

Vatulyan, A. O., & Nedin, R. D. (2023). On the sensitivity and reconstruction of 2D prestress state in a thin plate. Computational Continuum Mechanics, 16(1), 61-77. https://doi.org/10.7242/1999-6691/2023.16.1.5