Numerical investigation of the evolution of new phase domains in an elastic solid
DOI:
https://doi.org/10.7242/1999-6691/2022.15.4.36Keywords:
stress-induced phase transformations, interface propagation, configurational force, Eshelby stress tensor, 3D numerical modelingAbstract
Designing and using functional (smart) materials and structural elements requires understanding and quantifying the effects caused by phase transformations. This paper investigates the problem of evolution of new phase domains in an elastic solid arising as a result of stress-induced phase transformations during deformation. The phase transition is accompanied by the transformation strain and a change in elastic moduli. The motion of the domain boundary – the interface – is described by a kinetic equation relating the normal component of the interface velocity with a configurational (thermodynamic) force equal to the jump of the normal component of the Eshelby energy-momentum tensor. A finite element procedure has been developed and verified by considering the problem of thermodynamic equilibrium and the kinetics of a new phase plane layer that has an analytical solution. The distributions of the configurational force along the interface are constructed. It is shown that these distributions can be used as a tool for predicting the characteristic features of the new phase domain evolution. The numerical experiments revealed various scenarios of the new phase domain evolution under external deformation, which allow or exclude the existence of equilibrium two-phase configuration. Using the example of an elliptical hole, it is demonstrated that a stress concentrator can cause the development of a new phase even at small external strains, at which a phase transition does not occur in a homogeneous body. It is shown that the new phase domain itself can induce stress concentration, which contributes to a further phase transformation.
Downloads
References
Boyko V.S., Garber R.I., Kosevich A.M. Obratimaya plastichnost’ kristallov [the reversible plasticity of crystals]. Moscow, Nauka, 1991. 280 p.
Belyayev S.P., Volkov A.E., Ermolayev V.A., Kamentseva Z.P., Kuz’min S.L., Likhachev V.A., Mozgunov V.F., Razov A.I., Khayrov R.Yu. Materialy s effektom pamyati formy: Sprav. izd. [Materials with shape memory effect]. Saint Petersburg, NIIKh SPbGU, 1998. Vol. 1, 1997. 424 p.; Vol. 2, 1998. 374 p.; Vol. 3, 1998. 474 p.; Vol. 4, 1998. 268 p.
Movchan A.A., Ekster N.M. Actuator with a series connection of a shape memory alloy’s rod and an elastic bias element. MKMK – Composite Mechanics and Design, 2021, vol. 27, no. 2, pp. 169-190. https://doi.org/10.33113/mkmk.ras.2021.27.02.169_190.02
McKelvey A.L., Ritchie R.O. Fatigue‐crack propagation in Nitinol, a shape‐memory and superelastic endovascular stent material. J. Biomed. Mater. Res., 1999, vol. 47, pp. 301-308. https://doi.org/10.1002/(SICI)1097-4636(19991205)47:3<301::AID-JBM3>3.0.CO;2-H
Wilkes K.E., Liaw P.K. The fatigue behavior of shape-memory alloys. JOM, 2000, vol. 52, pp. 45-51. https://doi.org/10.1007/s11837-000-0083-3
Robertson S.W., Ritchie R.O. In vitro fatigue–crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects. Biomaterials, 2007, vol. 28, pp. 700 709. https://doi.org/10.1016/j.biomaterials.2006.09.034
Daly S., Miller A., Ravichandran G., Bhattacharya K. An experimental investigation of crack initiation in thin sheets of nitinol. Acta Mater., 2007, vol. 55, pp. 6322-6330. https://doi.org/10.1016/j.actamat.2007.07.038
Roth I., Krupp U., Christ H.J., Kübbeler M., Fritzen C.-P. Deformation induced martensite formation in metastable austenitic steel during in situ fatigue loading in a scanning electron microscope. ESOMAT, 2009, 06030. https://doi.org/10.1051/esomat/200906030
Bevis M., Hull D. Craze distribution around cracks in polystyrene. J. Mater. Sci., 1970, vol. 5, pp. 983-987. https://doi.org/10.1007/BF00558180
Botsis J., Chudnovsky A., Moet A. Fatigue crack layer propagation in polystyrene — Part I experimental observations. Int. J. Fract., 1987, vol. 33, pp. 263-276. https://doi.org/10.1007/BF00044415
Chudnovsky A. Slow crack growth, its modeling and crack-layer approach: A review. Int. J. Eng. Sci., 2014, vol. 83, pp. 6 41. https://doi.org/10.1016/j.ijengsci.2014.05.015
Volkov A.E. Mikrostrukturnoye modelirovaniye deformatsii splavov pri povtoryayushchikhsya martensitnykh prevrashcheniyakh [Microstructural modeling of the alloy deformation under repeated martensitic transformations]. Izv. RAN. Ser. Fizicheskaya – Bull. Russ. Acad. Sci. Phys., 2002, vol. 66, no. 9, pp. 1290-1297.
Movchan A.A., Movchan I.A. Odnomernaya mikromekhanicheskaya model’ nelineynogo deformirovaniya splavov s pamyat’yu formy pri pryamom i obratnom termouprugikh prevrashcheniyakh [One-dimensional micromechanical model for nonlinear deformation of shape memory alloys under forward and inverse thermoelastic transformations]. MKMK – Composite Mechanics and Design, 2007, vol. 13, no. 3, pp. 297-322.
Lagoudas D., Hartl D., Chemisky Y., Machado L., Popov P. Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. Int. J. Plast., 2012, vol. 32-33, pp. 155-183. https://doi.org/10.1016/j.ijplas.2011.10.009
Tikhomirova K.A. Development and numerical implementation of one-dimensional phenomenological model for phase deformation in shape memory alloys. Vychisl. mekh. splosh. sred – Comput. Contin. Mech., 2016, vol. 9, no. 2, pp. 192-206. https://doi.org/10.7242/1999-6691/2016.9.2.17
Chen L.-Q. Phase-field models for microstructure evolution. Annu. Rev. Mater. Res., 2002, vol. 32, pp. 113-140. https://doi.org/10.1146/annurev.matsci.32.112001.132041
Levitas V.I., Lee D.W., Preston D.L. Interface propagation and microstructure evolution in phase field models of stress-induced martensitic phase transformations. Int. J. Plast., 2010, vol. 26, pp. 395-422. https://doi.org/10.1016/j.ijplas.2009.08.003
Mamivand M., Zaeem M.A., El Kadiri H. A review on phase field modeling of martensitic phase transformation. Comput. Mat. Sci., 2013, vol. 77, pp. 304-311. https://doi.org/10.1016/j.commatsci.2013.04.059
Rezaee-Hajidehi M., Stupkiewicz S. Phase-field modeling of multivariant martensitic microstructures and size effects in nano-indentation. Mech. Mater., 2020, vol. 141, 103267. https://doi.org/10.1016/j.mechmat.2019.103267
Levitas V.I. Phase transformations, fracture, and other structural changes in inelastic materials. Int. J. Plast., 2021, vol. 140, 102914. https://doi.org/10.1016/j.ijplas.2020.102914
Boulbitch A., Korzhenevskii A.L. Morphological transformation of the process zone at the tip of a propagating crack. I. Simulation. Phys. Rev. E., 2020, vol. 101, 033003. https://doi.org/10.1103/PhysRevE.101.033003
Boulbitch A., Korzhenevskii A.L. Morphological transformation of the process zone at the tip of a propagating crack. II. Geometrical parameters of the process zone. Phys. Rev. E., 2020, vol. 101, 033004. https://doi.org/10.1103/PhysRevE.101.033004
Boulbitch A., Korzhenevskii A.L. Transformation toughness induced by surface tension of the crack-tip process zone interface: A field-theoretical approach. Phys. Rev. E., 2021, vol. 103, 023001. https://doi.org/10.1103/PhysRevE.103.023001
Birman V. On mode I fracture of shape memory alloy plates. Smart Mater. Struct., 1998, vol. 7, pp. 433-437. https://doi.org/10.1088/0964-1726/7/4/001
Yi S., Gao S. Fracture toughening mechanism of shape memory alloys due to martensite transformation. Int. J. Solids Struct., 2000, vol. 37, pp. 5315-5327. https://doi.org/10.1016/S0020-7683(99)00213-9
Laydi M.R., Lexcellent C. Determination of phase transformation surfaces around crack tip in shape memory alloys. MATEC Web of Conferences, 2015, vol. 33, 02010. https://doi.org/10.1051/matecconf/20153302010
Maletta C., Furgiuele F. Analytical modeling of stress-induced martensitic transformation in the crack tip region of nickel–titanium alloys. Acta Mater., 2010, vol. 58, pp. 92-101. https://doi.org/10.1016/j.actamat.2009.08.060
Hazar S., Anlas G., Moumni Z. Evaluation of transformation region around crack tip in shape memory alloys. Int. J. Fract., 2016, vol. 197, pp. 99-110. https://doi.org/10.1007/s10704-015-0069-3
The collected works of J. Willard Gibbs. Vol. 1, 2. Longmans, Green and Co, 1928.
Grinfel’d M.A. Metody mekhaniki sploshnykh sred v teorii fazovykh prevrashcheniy [Methods of continuum mechanics in the theory of phase transitions]. Moscow, Nauka, 1990. 312 p.
Eshelby J.D. The elastic energy–momentum tensor. J. Elasticity, 1975, vol. 5, pp. 321-335. https://doi.org/10.1007/BF00126994
Markenscoff X., Gupta A. (ed.) Collected works of J.D. Eshelby. The mechanics of defects and inhomogeneities. Springer, 2006. 939 p.
Wilmanski K. Thermomechanics of Continua. Springer, 1998. 273 p. https://doi.org/10.1007/978-3-642-58934-8
Gurtin M.E. Configurational forces as basic concepts of continuum physics. Springer, 2000. https://doi.org/10.1007/b97847
Kienzler R., Herrmann G. Mechanics in material space: with application to defect and fracture mechanics. Springer, 2000. 307 p. https://doi.org/10.1007/978-3-642-57010-0
Maugin G.A. Configurational forces: Thermomechanics, physics, mathematics, and numerics. Chapman and Hall/CRC, 2010. 527 p. https://doi.org/10.1201/b10356
Freidin A.B. On configurational forces in mechanics of phase and chemical transformations. PMM – Mechanics of Solids, 2022, vol. 86, no. 4, pp. 571-583. https://doi.org/10.31857/S0032823522040075
Mueller R., Gross D. 3D simulation of equilibrium morphologies of precipitates. Comput. Mater. Sci., 1998, vol. 11, pp. 35 44. https://doi.org/10.1016/S0927-0256(97)00193-6
Mueller R., Gross D., Lupascu D.C. Driving forces on domain walls in ferroelectric materials and interaction with defects. Comput. Mater. Sci., 2006, vol. 35, pp. 42-52. https://doi.org/10.1016/j.commatsci.2005.02.014
Gross D., Mueller R., Kolling S. Configurational forces – morphology evolution and finite elements. Mech. Res. Comm., 2002, vol. 29, pp. 529-536. https://doi.org/10.1016/S0093-6413(02)00296-3
Gross D., Kolling S., Mueller R., Schmidt I. Configurational forces and their application in solid mechanics. Eur. J. Mech. Solid., 2003, vol. 22, pp. 669-692. https://doi.org/10.1016/S0997-7538(03)00076-7
Abeyaratne R., Knowles J.K. Evolution of phase transitions: A continuum theory. Cambridge University Press, 2006. 242 p.
Le K.C. On kinetics of hysteresis. Continuum Mech. Thermodyn., 2007, vol. 18, pp. 335-342. https://doi.org/10.1007/s00161-006-0034-5
Freidin A.B., Eremeyev V.A. On kinetic nature of hysteresis phenomena in stress-induced phase transformations. Dynamical processes in generalized continua and structures, ed. H. Altenbach, A. Belyaev, V. Eremeyev, A. Krivtsov, A. Porubov. Springer Cham, 2019. Pp. 223-229. https://doi.org/10.1007/978-3-030-11665-1_12
Freidin A.B., Vilchevskaya E.N., Korolev I.K. Stress-assist chemical reactions front propagation in deformable solids. Int. J. Eng. Sci., 2014, vol. 83, pp. 57-75. https://doi.org/10.1016/j.ijengsci.2014.03.008
Freidin A.B., Korolev I.K., Aleshchenko S.P., Vilchevskaya E.N. Chemical affinity tensor and chemical reaction front propagation: theory and FE-simulations. Int. J. Fract., 2016, vol. 202, pp. 245-259. https://doi.org/10.1007/s10704-016-0155-1
Morozov A.V., Freidin A.B., Müller W.H. Stability of chemical reaction fronts in the vicinity of a blocking state. PNRPU Mechanics Bulletin, 2019, no. 3, pp. 58-64. https://doi.org/10.15593/perm.mech/2019.3.06
Morozov A. Numerical and analytical studies of kinetics, equilibrium, and stability of the chemical reaction fronts in deformable solids. PhD thesis, Technische Universität Berlin, 2021. 129 p.
Freidin A.B., Korolev I.K., Aleshchenko S.P. FEM-simulations of a chemical reaction front propagation in an elastic solid with a cylindrical hole. Mechanics and control of solids and structures, ed. V.A. Polyanskiy, A.K. Belyaev. Springer Cham, 2022. Pp. 195-208. https://doi.org/10.1007/978-3-030-93076-9_10
Grinfel’d M.A. Stability of heterogeneous equilibrium in system containing solid elastic phases. Dokl. Akad. Nauk SSSR, 1982, vol. 265, no. 4, pp. 836-840.
Morozov N.F., Freidin A.B. Zones of phase transitions and phase transformations in elastic bodies under various stress states. Proc. Steklov Inst. Math., 1998, vol. 223, pp. 220-232.
Kabanova P.K., Morozov A., Freidin A.B., Chudnovsky A. Numerical simulations of interface propagation in elastic solids with stress concentrators. Mechanics of heterogeneous materials, ed. Altenbach, G. Bruno, V.A. Eremeyev, M. Gutkin, W.H. Müller. Springer, 2023 [submitted for publication]
Eremeev V.A., Freidin A.B., Sharipova L.L. Nonuniqueness and stability in problems of equilibrium of elastic two-phase bodies. Dokl. Phys., 2003, vol. 48, no. 7, pp. 359-363. https://doi.org/10.1134/1.1598247
Yeremeyev V.A., Freidin A.B., Sharipova L.L. The stability of the equilibrium of two-phase elastic solids. J. Appl. Math. Mech., 2007, vol. 71, no. 1, pp. 61-84. https://doi.org/10.1016/j.jappmathmech.2007.03.007
Grabovsky Y., Truskinovsky L. Roughening instability of broken extremals. Arch. Rational Mech. Anal., 2011, vol. 200, pp. 183-202. https://doi.org/10.1007/s00205-010-0377-8
Prigogine I., Defay R. Chemical Thermodynamics. London: Longmans, Green, 1954. 543 p.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.