Modeling of the coupled processes of residual stress formation in a metallic alloy taking into account structure transformation due to pulse thermo-force surface hardening

Authors

DOI:

https://doi.org/10.7242/1999-6691/2022.15.4.35

Keywords:

white layer, residual stresses, modeling, phase transformations, finite elements, heat treatment

Abstract

A framework for finite-element modeling of structure formation and stress-strain state in metal alloys subjected to electromechanical treatment (EMT) is presented. The processes of creating the hardened layers with ultradisperse structure and improved operational characteristics on the surface of metal products are considered within a unified modeling system. The main stages of constructing a set of models of temperature-force actions during EMT leading to structural-phase transformations and the formation of technological residual stress fields are described. The models used are based on the constitutive relations of thermal conductivity during electric heating of metal by alternating current and the theories of plastic flow with isotropic-translational hardening, which take into account the dependence of thermal and mechanical properties of the material on temperature, strain rate and phase composition. An analysis of the calculated results and their comparison with experimental data are carried out. It is shown that the pulsed thermal action of the alternating current contributes to the formation of a regular surface structure with the alternating fragments of the hardened layer sections and self-tempering zones. The calculated patterns of the structural zones are in good agreement with the experimental results of metallographic analysis of the EMT hardened surface of the studied alloys. The residual stress fields have the same periodic nature – the zones of compressive stresses in the hardened sections alternate with the zones of tensile stresses in the interlayers of unhardened metal. The basic mechanisms (force, thermal, and phase) determining the magnitude and sign of residual stresses in the above zones are investigated. An approach to the analytical description of residual stress distribution along the radius of a cylindrical specimen is proposed. It appears to be useful for predicting the results of technological action during hardening of the product surface based on the EMT technique, reconstruction of residual stress diagrams in the case of a limited amount of experimental or calculated data, and approximation of numerical results. The approximation of circumferential stresses in the form of a transformed sinusoid is adopted as a basic function, the argument of which is a transforming function that corrects the transformation of the basic sinusoid. The functions of radial and axial stresses are determined by solving the equilibrium equations and the physical relations of the sample material.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено при финансовой поддержке Российского научного фонда в рамках научного проекта № 22-21-20085, а также гранта ВолгГТУ для молодых ученых № 5/477-22.

References

Chauhan A.S., Jha J.S., Telrandhe S., Srinivas V., Gokhale A.A., Mishra S.K. Laser surface treatment of α–β titanium alloy to develop a β-rich phase with very high hardness. J. Mater. Process. Tech., 2021, vol. 288, 116873. https://doi.org/10.1016/j.jmatprotec.2020.116873

Fang Y. Strengthening characteristics in TC17 titanium alloy treated during LSP. Optik, 2021, vol. 226, 165895. https://doi.org/10.1016/j.ijleo.2020.165895

Poulon-Quintin A., Watanabe I., Watanabe E., Bertrand C. Microstructure and mechanical properties of surface treated cast titanium with Nd:YAG laser. Dent. mater., 2012, vol. 28, pp. 945-951. https://doi.org/10.1016/j.dental.2012.04.008

Morozova E.A., Muratov V.S. Poverkhnostnoye lazernoye legirovaniye titanovogo splava VT9. Sovremennyye naukoyemkiye tekhnologii – Modern high technologies, 2010, no. 4, p. 62.

Li R., Jin Y., Li Z., Qi K. A comparative study of high-power diode laser and CO2 laser surface hardening of AISI 1045 steel. J. of Materi. Eng. and Perform., 2014, vol. 23, pp. 3085-3091. https://doi.org/10.1007/s11665-014-1146-x

Chen Y., Zhao X., Liu P., Pan R., Ren R. Influences of local laser quenching on wear performance of D1 wheel steel. Wear, 2018, vol. 414-415, pp. 243-250. https://doi.org/10.1016/j.wear.2018.07.016

Plekhov О.А., Kostina А.А., Iziumov R.I., Iziumova A.Yu. Finite-element analysis of residual stresses in the TC4 titanium alloy treated by laser shock peening. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2022, vol. 15, no. 2, pp. 171-184. https://doi.org/10.7242/1999-6691/2022.15.2.13

Ivannikov A.Yu., Kalita V.I., Komlev D.I., Radyuk A.A., Bagmutov V.P., Zakharov I.N., Parshev S.N. The effect of electromechanical treatment on structure and properties of plasma sprayed Fe-6W-5Mo-4Cr-2V-C coating. Surf. Coatings Tech., 2018, vol. 335, pp. 327-333. https://doi.org/10.1016/j.surfcoat.2017.12.051

Yan M.F., Wu Y.Q., Liu R.L., Yang M., Tang L.N. Microstructure and mechanical properties of the modified layer obtained by low temperature plasma nitriding of nanocrystallized 18Ni maraging steel. Mater. Des., 2013, vol. 47, pp. 575-580. https://doi.org/10.1016/j.matdes.2012.11.007

Mulin Yu.I., Verkhoturov A.D., Vlasenko V.D. Elektroiskrovoye legirovaniye poverkhnostey titanovykh splavov [Electrospark alloying of surfaces of titanium alloys]. Perspektivnye Materialy, 2006, no. 1, pp. 79-85.

Krivonosova Ye.A., Gorchakov A.I., Scherbakov Yu.V. Structure and properties of coatings in microarc oxidation. Weld. Int., 2014, vol. 28, pp. 816-819. https://doi.org/10.1080/09507116.2013.868099

Noli F., Misaelides P., Riviere J.P. Enhancement of the corrosion resistance of a Ti-based alloy by ion-beam deposition methods. Nuclear Instruments and Methods in Physics Research B, 2009, vol. 267, pp. 1670-1674. https://doi.org/10.1016/j.nimb.2009.01.100

Gokul Lakshmi S., Tamilselvi S., Rajendran N., Arivuoli D. Effect of N+ ion implantation on the corrosion behavior of Ti-6Al-7Nb and Ti-5Al-2Nb-1Ta orthopaedic alloys in Hanks solution. Journal of Applied Electrochemistry, 2004, vol. 34, pp. 271-276. https://doi.org/10.1023/B:JACH.0000015619.68036.ae

Gao Y. Influence of pulsed electron beam treatment on microstructure and properties of TA15 titanium alloy. Appl. Surf. Sci., 2013, vol. 264, pp. 633-635. https://doi.org/10.1016/j.apsusc.2012.10.083

Gao Y. Surface modification of TC4 titanium alloy by high current pulsed electron beam (HCPEB) with different pulsed energy densities. J. Alloys Comp., 2013, vol. 572, pp. 180-185. https://doi.org/10.1016/j.jallcom.2013.04.002

Gao Y. Surface modification of TA2 pure titanium by low energy high current pulsed electron beam treatments. J. Alloys Comp., 2011, vol. 257, pp. 7455-7460. https://doi.org/10.1016/j.apsusc.2011.03.005

Liu R., Yuan S., Lin N., Zeng Q., Wang Z., Wu Y. Application of ultrasonic nanocrystal surface modification (UNSM) technique for surface strengthening of titanium and titanium alloys: a mini review. Journal of Materials Research and Technology, 2021, vol. 11, pp. 351-377. https://doi.org/10.1016/j.jmrt.2021.01.013

Vishnyakov M.A., Bogdanovich V.I., Prokopovich K.V., Gromova E.G. Influence of thermoplastic hardening on the microstructure of heat resisting and titanic alloys. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk – Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2010, vol. 12, no. 4-2, pp. 370-374.

Fu P., Zhan K., Jiang C. Micro-structure and surface layer properties of 18CrNiMo7-6 steel after multistep shot peening. Mater. Des., 2013, vol. 51, pp. 309-314. https://doi.org/10.1016/j.matdes.2013.04.011

Li Y., Sun K., Liu P., Liu Y., Chui P. Surface nanocrystallization induced by fast multiple rotation rolling on Ti-6Al-4V and its effect on microstructure and properties. Vacuum, 2014, vol. 101, pp. 102-106. https://doi.org/10.1016/j.vacuum.2013.07.028

Salikhova N.K., Dudin D.S., Keller I.E., Oskolkov A.A., Kazantsev A.V., Trushnikov D.N. Modeling of AMg6 alloy recrystallization in the forged layer during the overlay welding of a material in the process of hybrid additive manufacturing. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2022, vol. 15, no. 2, pp. 234-246. https://doi.org/10.7242/1999-6691/2022.15.2.18

Rogovoy A.A., Salikhova N.K. Numerical investigation of thermo-mechanical behaviour and microstructure evolution of a nickel alloy workpiece during its upsetting. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2021, vol. 14, no. 2, pp. 177-189. https://doi.org/10.7242/1999-6691/2021.14.2.15

Radchenko V.P., Pavlov V.F., Berbasova T.I., Saushkin M.N. The method of reconstruction of residual stresses and plastic deformations in thin-walled pipelines in the delivery state and after bilateral vibro-shock surface hardening with a shot. Vestnik PNIPU. Mekhanika – PNRPU Mechanics Bulletin, 2020, no. 2, pp. 123-133. https://doi.org/10.15593/perm.mech/2020.2.10

Bagmutov V.P., Parshev S.N., Dudkina N.G., Zakharov I.N. Elektromekhanicheskaya obrabotka: tekhnologicheskiye i fizicheskiye osnovy, svoystva, realizatsiya [Electromechanical processing: technological and physical foundations, properties, implementation]. Novosibirsk, Nauka, 2003. 318 p.

Bagmutov V.P., Zakharov I.N. Simulation of the mechanical behavior of a specimen surface-hardened by concentration energy fluxes. Industrial Laboratory, 2000, vol. 66, pp. 471-477.

Bagmutov V.P., Zakharov I.N., Denisevich D.S. Features of solving technological problems in mechanics of bodies with non-uniform metal structure transformed in thermo-force loading. Vestnik PNIPU. Mekhanika – PNRPU Mechanics Bulletin, 2016, no. 1, pp. 5-25. https://doi.org/10.15593/perm.mech/2016.1.01

Bagmutov V.P., Denisevich D.S., Zakharov I.N., Romanenko M.D., Fastov S.A. Simulation of residual stresses during pulsed thermo-force surface hardening. Vestnik PNIPU. Mekhanika – PNRPU Mechanics Bulletin, 2019, no. 3, pp. 112-124. https://doi.org/10.15593/perm.mech/2019.3.12

Bhaumik M., Maity K. Finite element simulation and experimental investigation of Ti-5Al-2.5Sn titanium alloy during EDM process. Materials Today: Proceedings, 2021, vol. 46, pp. 24-29. https://doi.org/10.1016/j.matpr.2020.05.135

Nirmal K., Jagadesh T. Numerical simulations of friction stir welding of dual phase titanium alloy for aerospace applications. Materials Today: Proceedings, 2021, vol. 46, pp. 4702-4708. https://doi.org/10.1016/j.matpr.2020.10.300

Zhang J., Li X., Xu D., Yang R. Recent progress in the simulation of microstructure evolution in titanium alloys. Progress in Natural Science: Materials International, 2019, vol. 29, pp. 295-304. https://doi.org/10.1016/j.pnsc.2019.05.006

Trusov P.V., Ostanina T.V., Shveykin A.I. Evolution of the grain structure of metals and alloys under severe plastic deformation: Continuum models. Vestnik PNIPU. Mekhanika – PNRPU Mechanics Bulletin, 2022, no. 1, pp. 123-155. https://doi.org/10.15593/perm.mech/2022.1.11

Sun R., Keller S., Zhu Y., Guo W., Kashaev N., Klusemann B. Experimental-numerical study of laser-shock-peening-induced retardation of fatigue crack propagation in Ti-17 titanium alloy. Int. J. Fatig., 2021, vol. 145, 106081. https://doi.org/10.1016/j.ijfatigue.2020.106081

Keller S., Horstmann M., Kashaev N., Klusemann B. Crack closure mechanisms in residual stress fields generated by laser shock peening: A combined experimental-numerical approach. Eng. Fract. Mech., 2019, vol. 221. 106630. https://doi.org/10.1016/j.engfracmech.2019.106630

Wang C., Li K., Hu X., Yang H., Zhou Y. Numerical study on laser shock peening of TC4 titanium alloy based on the plate and blade model. Optics Laser Tech., 2021, vol. 142, 107163. https://doi.org/10.1016/j.optlastec.2021.107163

Gong H., Fan Q., Zhou Y., Wang D., Li P., Su T., Zhang H. Simulation of failure processes of as-cast Ti-5Al-5Nb-1Mo-1V-1Fe titanium alloy subjected to quasi-static uniaxial tensile testing. Mater. Des., 2019, vol. 180, 107962. https://doi.org/10.1016/j.matdes.2019.107962

Sun R., Che Z., Cao Z., Zou S., Wu J., Guo W., Zhu Y. Fatigue behavior of Ti-17 titanium alloy subjected to different laser shock peened regions and its microstructural response. Surf. Coatings Tech., 2020, vol. 383, 125284. https://doi.org/10.1016/j.surfcoat.2019.125284

Ren Y.M., Lin X., Guo P.F., Yang H.O., Tan H., Chen J., Li J., Zhang Y.Y., Huang W.D. Low cycle fatigue properties of Ti-6Al-4V alloy fabricated by high-power laser directed energy deposition: Experimental and prediction. Int. J. Fatig., 2019, vol. 127, pp. 58-73. https://doi.org/10.1016/j.ijfatigue.2019.05.035

Kumar R., Rao A., Ganesh Sundara Raman S., Kumar V. Creep-fatigue damage simulation at multiple length scales for an aeroengine titanium alloy. Int. J. Fatig., 2018, vol. 116, pp. 505-512. https://doi.org/10.1016/j.ijfatigue.2018.07.002

Busse D., Ganguly S., Furfari D., Irving P.E. Optimised laser peening strategies for damage tolerant aircraft structures. Int. J. Fatig., 2020, vol. 141, 105890. https://doi.org/10.1016/j.ijfatigue.2020.105890

Shchyglo O., Du G., Engels J.K., Steinbach I. Phase-field simulation of martensite microstructure in low-carbon steel. Acta Mater., 2019, vol. 175, pp. 415-425. https://doi.org/10.1016/j.actamat.2019.06.036

Leblond J.B., Devaux J. A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size. Acta Metallurgica, 1984, vol. 32, pp. 137-146. https://doi.org/10.1016/0001-6160(84)90211-6

Inoue T., Wang Z. Coupling between stress, temperature, and metallic structures during processes involving phase transformations. Mater. Sci. Tech., 1985, vol. 1, pp. 845-850. https://doi.org/10.1179/mst.1985.1.10.845

Fizicheskiye osnovy elektrotermicheskogo uprochneniya stali [Physical foundations of electrothermal hardening of steel]. Kiyev, Naukova dumka, 1973. 335 p.

Johnson G.R., Cook W.H. Proc. of the 7th International Symposium on Ballistics, Hague, Netherlands, April 19-21, 1983. Pp. 541-547.

Hung T.P., Shi H.E., Kuang J.H. Temperature modelling of AISI 1045 steel during surface hardening processes. Materials, 2018, vol. 11, 1815. https://doi.org/10.3390/ma11101815

Lee S.-J., Lee Y.-K. Latent heat of martensitic transformation in a medium-carbon low-alloy steel. Scripta Materialia, 2009, vol. 60, pp. 1016-1019. https://doi.org/10.1016/j.scriptamat.2009.02.042

Murugesan M., Juntg D.W. Johnson Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications. Materials, 2019, vol. 12, 609. https://doi.org/10.3390/ma12040609

Mahnken R., Wolff M., Cheng C. A multi-mechanism model for cutting simulations combining visco-plastic asymmetry and phase transformation. Int. J. Solids Struct., 2013, vol. 50, pp. 3045-3066. https://doi.org/10.1016/j.ijsolstr.2013.05.008

Published

2023-01-12

Issue

Section

Articles

How to Cite

Bagmutov, V. P., Denisevich, D. S., Zakharov, I. N., Romanenko, M. D., & Barinov, V. V. (2023). Modeling of the coupled processes of residual stress formation in a metallic alloy taking into account structure transformation due to pulse thermo-force surface hardening. Computational Continuum Mechanics, 15(4), 449-465. https://doi.org/10.7242/1999-6691/2022.15.4.35