Distribution of titanium diboride microparticles introduced into aluminum ingot by MHD-stirring of a crystallizing melt

Authors

  • Stanislav Yurievich Khripchenko Institute of Continuous Media Mechanics UB RAS
  • Veniamin Mikhaylovich Dolgikh Institute of Continuous Media Mechanics UB RAS
  • Ramil’ Rifgatovich Siraev Perm National Research Polytechnic University

DOI:

https://doi.org/10.7242/1999-6691/2022.15.4.34

Keywords:

MHD-stirring, numerical experiment, aluminum composite, microparticles, particle distribution, physical experiment

Abstract

The paper presents a method for incorporating titanium diboride TiB2 microparticles 1-5 μm in size into aluminum melt А0 by exposing the liquid metal to rotating and traveling magnetic fields. Under the combined action of these fields, numerical simulation is used to study the behavior of macro- and microparticles in a crucible with liquid aluminum. The mathematical and numerical models provide for the solutions of several sub-problems: calculation of the electromagnetic field of the MHD-stirrer and the resulting Lorentz forces in the liquid metal; investigation of the liquid metal flow in the crucible under the action of Lorentz forces, and the formation of its free surface due to the action of the rotating field; determination of the distribution and motion trajectories of macro- and microparticles in the flowing metal. The results of the physical experiments on the injection of TiB2 microparticles into liquid aluminum and its subsequent directional crystallization due to continuous MHD-stirring by the traveling and rotating magnetic fields are described. In the experiments, two ways of introducing microparticles into liquid aluminum were tested: in the first variant, reinforcing particles were injected into molten aluminum as components of pressed pellets containing aluminum microparticles; in the second, the microparticles were initially located at the bottom of the crucible and covered with an aluminum plate, then the crucible was filled with liquid aluminum. The analysis of the physical characteristics of the obtained ingot material and the results of its study by optical and electron microscopy techniques demonstrated that microparticles are almost uniformly distributed in the core of the ingots, which qualitatively agrees with the results of experimental observations.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена в соответствии с госбюджетным планом AAAA-A19-119012290101-5 ИМСС УрО РАН (разделы 1, 2), а также при поддержке РФФИ и Пермского края (проект № 19-48-590001 р_а (разделы 3, 4).

References

Borisov V.G., Kazakov А.А. Proc. of the ALUMITECH’97, Atlanta, GA, USA, May 19-23, 1997. Pp. 191-203.

Kosnikov G.A., Borisov V.G. Proc. of the 8th Russian scientific-practical conference "Foundry production today and tomorrow". St. Petersburg, May 23-25, 2010. St. Petersburg, Publishing House of Polytechnical University, 2010. Pp. 64 75.

Borisov V. Aluminum-dased cmposite billets produced by plasma injectin and thixocasting. Light Metal Age, 2017, April, pp. 48-51.

Gelfgat Yu., Skopis M., Grabis J. Electromagnetically driven vortex flow to introduce small solid particles into liquid metal. Magnetohydrodynamics, 2005, vol. 41, pp. 249-254.

Alimova O.T., Grishanova M.S., Minaev A.A. RF Patent No. 117,439, Byull. Izobret., 16 March 2012.

Serebryakov S.P., Larionov A.Ya., Izotov V.A., Zimina M.N. RF Patent No. 2,348,719 С2, Byull. Izobret., 20 November 2006.

Borisov V.G. Yudakov A.A. Khripchenko S.Yu. Denisov S.A. Zaitsev V.N. RF Patent No. 2,144,573, Byull. Izobret., 27 June 1995.

Bojarevics V., Djambazov G.S., Pericleous K.A. Contactless ultrasound generation in a crucible. Metall. Mater. Trans. A, 2015, vol. 46, pp. 2884-2892. https://doi.org/10.1007/s11661-015-2824-5

Grants I., Gerbeth G., Bojarevičs A. Contactless magnetic excitation of acoustic cavitation in liquid metals. J. Appl. Phys., 2015, vol. 117, 204901. https://doi.org/10.1063/1.4921164

Brodova I.G., Uimin M.A., Astafiev V.V., Kotenkov P.V., Popova E.A., Yablonskich T.I. Sintez alyuminiyevykh kompozitov s nanorazmernymi chastitsami karbida i borida titana [Synthesis of aluminum composites with nanoscale particles of carbides and titanium diborides]. POM – Letters on Materials, 2013, vol. 3, no. 2, pp. 91-94.

Kaldre I., Bojarevics A. Electromagnetic contactless method for metal matrix composite production. Magnetohydrodynamics, 2020, vol. 56, pp. 325-332. https://doi.org/10.22364/mhd.56.2-3.24

Vorozhtsov A.B., Danilov P.A., Zhukov I.A., Khmeleva M.G., Platov V.V., Valikhov V.D. The effect of external actions on a molten metal and the influence of nonmetallic particles on the structure and mechanical properties of the light alloys based on aluminum and magnesium. Vestn. Tomsk. gos. un-ta. Matem. i mekh. – Tomsk State University Journal of Mathematics and Mechanics, 2020, no. 64, pp. 91-105. https://doi.org/10.17223/19988621/64/7

Khripchenko S., Dolgikh V., Kiselkov D. Experiment on Injection of SIC and BN Nanoparticles into liquid aluminum using MHD stirring with subsequent crystallization of the melt. J. Phys.: Conf. Ser., 2021, vol. 1945, 012017. https://doi.org/10.1088/1742-6596/1945/1/012017

Khripchenko S.Yu., Siraev R.R. Influence of toroidal MHD stirring on liquid metal crystallization front motion and heat transfer in a cylindrical crucible. Magnetohydrodynamics, 2019, vol. 55, pp. 447-454. https://doi.org/10.22364/mhd.55.4.6

Grants I., Räbiger D., Vogt T., Eckert S., Gerbeth G. Application of magnetically driven tornado-like vortex for stirring floating particles into liquid metal. Magnetohydrodynamics, 2015, vol. 51, pp. 419-424.

Cramer A., Pal J., Gerbeth G. Experimental investigation of a flow driven by a combination of a rotating and a traveling magnetic field. Phys. Fluids, 2007, vol. 19, 118109. https://doi.org/10.1063/1.2801407

Timofeev V., Khatsayuk M. Design fundamentals for MHD stirrers for molten metals. Magnetohydrodynamics, 2016, vol. 52, pp. 495-506.

Khripchenko S.Yu., Dolgikh V.M., Denisov S.A., Kolesnichenko I.V., Nikulin L.V. Formation of structure and properties of aluminum ingots under magnetohydrodynamic effects. Tsvetnye Metally, 2013, no. 4, pp. 70-73.

Brackbill J.U., Kothe D.B., Zemach C. Continuum method for modelling surface tension. J. Comput. Phys., 1992, vol. 100, pp. 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y

Timofeev V., Pervukhin M., Vinter E., Sergeev N. Behavior of non-conducting particles in molten aluminium cast into electromagnetic molds. Magnetohydrodynamics, 2020, vol. 56, pp. 459-472. https://doi.org/10.22364/mhd.56.4.10

Schiller L., Naumann A. Uber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung [A fundamental drag coefficient correlation]. Z. Ver. Dent. Ing., 1933, Bd. 77, pp. 318-320.

Siraev R.R., Khripchenko S.Yu. MHD stirring of liquid metal in crucibles with circular and square cross sections under rotating magnetic field. Magnetohydrodynamics, 2018, vol. 54, pp. 277-286. https://doi.org/10.22364/mhd.54.3.7

Siraev R.R., Khripchenko S.Yu. Liquid metal exposed to rotating and travelling magnetic fields in crucibles with circular and square cross-sections. Magnetohydrodynamics, 2018, vol. 54, pp. 287-297. https://doi.org/10.22364/mhd.54.3.8

Published

2023-01-12

Issue

Section

Articles

How to Cite

Khripchenko, S. Y., Dolgikh, V. M., & Siraev, R. R. (2023). Distribution of titanium diboride microparticles introduced into aluminum ingot by MHD-stirring of a crystallizing melt. Computational Continuum Mechanics, 15(4), 438-448. https://doi.org/10.7242/1999-6691/2022.15.4.34