Control of natural vibration frequencies of shallow shells using wire-type actuators

Authors

DOI:

https://doi.org/10.7242/1999-6691/2022.15.4.32

Keywords:

shallow cylindrical shells, natural frequencies of vibrations, prestress, finite element method

Abstract

Shallow shells are widely used in the aeronautical and aerospace industries, where the problem of controlled variation in the natural frequencies of the structure remains relevant nowadays. In this context, the use of mechanical actuators based on shape memory alloy wires offers considerable promise due to their compact design and ability to develop significant forces. In this work, the possibility of using such devices to control the natural frequencies of a segment of a shallow cylindrical shell is investigated numerically. The strains developed in the shell are found from the nonlinear relations taking into account the hypotheses of the Reissner-Mindlin theory. These relations are then linearized with respect to a state with a small deviation from the initial equilibrium caused by a decrease in the wire length. In order to reduce the computational cost, the shape memory effect is not simulated directly. Instead, an equivalent wire deformation of a certain value is prescribed. A mathematical formulation of the dynamic problem is based on the variational principle of virtual displacements, which takes into account the prestress state. The position of wires with respect to the circumferential coordinate and their initial deformation (shortening) are determined separately for each frequency (mode shape) of vibration by solving the optimization problem with constraints. The values of the objective function are determined using the capabilities of the ANSYS Mechanical APDL software, in which the natural frequencies of the examined structure are calculated by the finite element method. The reliability of the results is confirmed by comparing them with the data presented in the literature for a circular cylindrical shell subjected to internal pressure. A series of calculations showed that wire shortening leads not only to a change in the natural frequencies of vibrations up and down, but also has a qualitative effect on the corresponding mode shapes and their sequential order in the spectrum. It was also found that an increase in the convexity of the shell (its elevation relative to the plane) reduces the efficiency of the wire actuators.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено в рамках реализации Программы создания и развития научного центра мирового уровня «Сверхзвук» на 2020–2025 годы при финансовой поддержке Министерства науки и высшего образования России (соглашение от 21 апреля 2022 года № 075-15-2022-329).

References

Sofla A.Y.N., Meguid S.A., Tan K.T., Yeo W.K. Shape morphing of aircraft: Status and challenges. Materials and Design, 2010, vol. 31, pp. 1284-1292. https://doi.org/10.1016/j.matdes.2009.09.011

Kim N.-G., Han M.-W., Iakovleva A., Park H.-B., Chu W.-S., Ahn S.-H. Hybrid composite actuator with shape retention capability for morphing flap of unmanned aerial vehicle (UAV). Compos. Struct. 2020, vol. 243, 112227. https://doi.org/10.1016/j.compstruct.2020.112227

Sinn T., Barrett R. Design, manufacturing and test of a high lift secondary flight control surface with shape memory alloy post-buckled precompressed actuators. Actuators, 2015, vol. 4, pp. 156-171. https://doi.org/10.3390/act4030156

Kreitzman J.R., Calkins F.T., Nicholson D.E., Lafranchi A.F., Dodge C.A., Cattafesta L.N. Active acoustic liners enabled by shape memory alloy technology. AIAA AVIATION 2020 FORUM. https://doi.org/10.2514/6.2020-2617

Jiang D., Kyriakides S., Bechle N.J., Landis C.M. Bending of pseudoelastic NiTi tubes. Int. J. Solids Struct. 2017, vol. 124, pp. 192-214. https://doi.org/10.1016/j.ijsolstr.2017.06.032

Tikhomirova K.A. Development and numerical implementation of one-dimensional phenomenological model for phase deformation in shape memory alloys. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2016, vol. 9, no. 2, pp. 192-206. https://doi.org/10.7242/1999-6691/2016.9.2.17

Saadat S., Salichs J., Noori M., Hou Z., Davoodi H., Bar-on I., Suzuki Y., Masuda A. An overview of vibration and seismic application of NiTi shape memory alloy. Smart Mater. Struct. 2002, vol. 11, pp. 218-229. https://doi.org/10.1088/0964-1726/11/2/305

Tabrizikahou A., Kuczma M., Nowotarski P., Kwiatek M., Javanmardi A. Sustainability of civil structures through the application of smart materials: A review. Materials, 2021, vol. 14, 4824. https://doi.org/10.3390/ma14174824

Tabrizikahou A., Kuczma M., Łasecka-Plura M., Farsangi E.N., Noori M., Gardoni P., Li S. Application and modelling of shape-memory alloys for structural vibration control: state-of-the-art review. Construct. Build. Mater. 2022, vol. 342, 127975. https://doi.org/10.1016/j.conbuildmat.2022.127975

Aiken I.D., Kelly J.M. Earthquake simulator testing and analytical studies of two energy-absorbing systems for multistory structures. 1990. Report no. UCB/EERC-90-03. 300 p.

Clark P.W., Aiken I.D., Kelly J.M., Higashino M., Krumme R. Proc. of the Smart Structures and Materials. 1995: Passive Damping. San Diego, CA, United States, 26 February – 3 March, 1995. P. 241-251. https://doi.org/10.1117/12.208891

Baz A., Imam K., McCoy J. Active vibration control of flexible beams using shape memory actuators. J. Sound Vib., 1990, vol. 140, pp. 437-456. https://doi.org/10.1016/0022-460X(90)90760-W

Bidaux J.-E., Månson J.-A.E., Gotthardt R. Active stiffening of composite materials by embedded shape-memory-alloy fibres. MRS Online Proceedings Library, 1996, vol. 459, pp. 107-117. https://doi.org/10.1557/PROC-459-107

Shahin A.R., Meckl P.H., Jones J.D. Modeling of SMA tendons for active control of structures. J. Intell. Mater. Syst. Struct., 1997, vol. 8, pp. 51-70. https://doi.org/10.1177/1045389X9700800106

Heinonen J., Vessonen I., Klinge P., Järvinen E. Controlling stiffness of a frame spring by changing the boundary condition with an SMA actuator. Comput. Struct. 2008, vol. 86, pp. 398-406. http://dx.doi.org/10.1016/j.compstruc.2007.02.008

Zareie S., Zabihollah A. A semi-active SMA-MRF structural stability element for seismic control in marine structures. Appl. Ocean Res., 2020, vol. 100, 102161. http://dx.doi.org/10.1016/j.apor.2020.102161

Zareie S., Hamidia M., Zabihollah A., Ahmad R., Dolatshahi K.M. Design, validation, and application of a hybrid shape memory alloy-magnetorheological fluid-based core bracing system under tension and compression. Structures, 2022, vol. 35, pp. 1151-1161. http://dx.doi.org/10.1016/j.istruc.2021.08.094

Vanin G.A., Semenyuk N.P., Emel’yanov R.F. Ustoychivost’ obolochek iz armirovannykh materialov [Stability of shells made of reinforced materials]. Kiyev: Naukova dumka, 1978. 212 p.

Kligman E.P. Ustoychivost’ i kolebaniya vyazkouprugikh strukturno neodnorodnykh mnogosloynykh obolochek vrashcheniya [Stability and vibrations of viscoelastic structurally inhomogeneous multilayer shells of revolution]. PhD Dissertation, Institute of Continuous Media Mechanics UB RAS, Perm, 1986. 175 p.

Bochkarev S.A., Matveenko V.P. Numerical modelling of the stability of loaded shells of revolution containing fluid flows. J. Appl. Mech. Tech. Phys., 2008, vol. 49, pp. 313-322. https://doi.org/10.1007/s10808-008-0043-1

Bochkarev S.A., Lekomtsev S.V., Matveenko V.P. Natural vibrations of loaded noncircular cylindrical shells containing a quiescent fluid. Thin-Walled Struct., 2015, vol. 90, pp. 12-22. https://doi.org/10.1016/j.tws.2015.01.001

Bathe K.-J., Dvorkin E.N. A formulation of general shell elements — the use of mixed interpolation of tensorial components. Int. J. Numer. Meth. Eng., 1986, vol. 22, pp. 697-722. https://doi.org/10.1002/nme.1620220312

Dvorkin E.N., Bathe K.-J. A continuum mechanics based four-node shell element for general nonlinear analysis. Eng. Comput. 1984, vol. 1, pp. 77-88. https://doi.org/10.1108/eb023562

Bathe K.-J. Finite element procedures. Upper Saddle River: Prentice Hall, 1996. 1037 p.

Miserentino R., Volsteen L.F. Vibration tests of pressurized thin-walled cylindrical shells. 1965. Report no. NASA TN D 3066. 50 p.

Zhang Y.L., Gorman G.D., Reese J.M. Vibration of prestressed thin cylindrical shells conveying fluid. Thin-Walled Struct. 2003, vol. 41, pp. 11031127. https://doi.org/10.1016/S0263-8231(03)00108-3

Published

2023-01-12

Issue

Section

Articles

How to Cite

Kamenskikh, A. O., Lekomtsev, S. V., & Matveenko, V. P. (2023). Control of natural vibration frequencies of shallow shells using wire-type actuators. Computational Continuum Mechanics, 15(4), 418-428. https://doi.org/10.7242/1999-6691/2022.15.4.32