Mechanical analysis of folding of a tape spring in a flexible hinge design

Authors

  • Nikolay Nikolayevich Goldobin Reshetnev Siberian State University of Science and Technology
  • Nikita Viktorovich Eremin Reshetnev Siberian State University of Science and Technology; Federal Research Center for Information and Computational Technologies

DOI:

https://doi.org/10.7242/1999-6691/2022.15.4.31

Keywords:

flexible hinge, tape spring, finite element model

Abstract

This paper is devoted to the study of flexible tape-spring hinges at the stage preceding the numerical optimization of their geometrical parameters. This stage involves the development of a parametric computational model and a method for conducting complex mechanical analysis of the tape spring. The paper presents a detailed description of the parametric model and the methods for numerical simulation of flexible tape spring hinges using an elastoplastic material model. The capabilities of the methods for nonlinear strength analysis of folded tape springs are illustrated by a few examples of their practical implementation. The stability bounds of the tape spring model are determined by the method of finite element modeling, as well as ways to simplify the calculation model. It has been found that in the numerical simulation of folding stresses, the maximum rotation of the free edge of the tape can be restricted to 30°, at which the stress limit is reached. This makes it possible to reduce the time of the numerical experiment by about 3 times. It is shown that the bilinear model of isotropic hardening of the tape material can be replaced by the linear elastic model, since during the parametric optimization the yield strength is set as a criterion. The use of the linear elastic material model makes it possible to distribute computational resources more effectively. The results of this study will be used in further research for developing a parametric optimization scheme that provides an automated search for the most rational designs of flexible tape-spring hinges.

Downloads

Download data is not yet available.
Supporting Agencies
Работа выполнена в рамках государственного задания Минобрнауки России «Интеллектуальные материалы и структуры» проекта «Разработка многофункциональных интеллектуальных материалов и структур на основе модифицированных полимерных композиционных материалов, способных функционировать в экстремальных условиях» (номер темы FEFE-2020-0015).

References

Thill C., Etches J., Bond I., Potter K., Weaver P. Morphing skins. Aeronaut J., 2008, vol. 112, pp. 117-139. https://doi.org/10.1017/S0001924000002062

Qi X., Huang H., Li B., Deng Z. A large ring deployable mechanism for space satellite antenna. Aero. Sci. Tech., 2016, vol. 58, pp. 498-510. https://doi.org/10.1016/j.ast.2016.09.014

Pellegrino S., Green C., Guest S.D., What A. SAR advanced deployable structures. Cambridge University Engineering Department, 2000. 57 p. https://www.academia.edu/75794516/SAR_advanced_deployable_structure

Givois D., Sicre J., Mazoyer T. Proc. of the 9th European Space Mechanisms & Tribology Symposium, Liège, Belgium, September 19-21, 2001. Pp. 145-151.

Höhn P. Design, construction and validation of an articulated solar panel for CubeSats. Lulea University of Technology, Master Thesis, 2010. 86 p.

Ranade A.R., Kulkarni S.S. Proc. of the 2nd National Conference on Small Satellite Technology and Applications, Trivandrum, Kerala, India, December 11-12, 2020. https://doi.org/10.13140/RG.2.2.14611.50729

Kim D.-Y., Choi H.-S., Lim J.H., Kim K.-W., Jeong J. Experimental and numerical investigation of solar panels deployment with tape spring hinges having nonlinear hysteresis with friction compensation. Appl. Sci., 2020, vol. 10, 7902. https://doi.org/10.3390/app10217902

Tupper M., Munshi N., Beavers F., Gall K., Mikuls M., Meink T. Developments in elastic memory composite materials for spacecraft deployable structures. 2001 IEEE Aerospace Conference Proceedings, 2001, vol. 5, pp. 2541-2547. https://doi.org/10.1109/AERO.2001.931215

Jeong J.W., Yoo Y.I., Lee J.J., Lim J.H., Kim K.W. Development of a tape spring hinge with a SMA latch for a satellite solar array deployment using the independence axiom. IERI Procedia, 2012, vol. 1, pp. 225-231. https://doi.org/10.1016/j.ieri.2012.06.035

ANSYS Academic Research Mechanical, Help System, Workbench User's Guide, ANSYS, Inc. https://ansyshelp.ansys.com

Gallagher R.H. The finite element method. Fundamentals. Prentice-Hall, 1975. 420 p.

Zienkiewicz O.C. The finite element method in engineering science. McGraw-Hill, 1971. 521 p.

Timoshenko S. Strength of materials. Part I. Elementary theory and problems. D. Van Nostrand Company Inc., 1930.

p.

ANSYS Academic Research Mechanical, Help System, Mechanical APDL, ANSYS, Inc.

Goldobin N.N., Sapegin A.M. Raschet uprugogo skladyvaniya stal’noy lentochnoy pruzhiny gibkogo sharnira [Calculation of elastic folding of a steel tape spring of a flexible hinge]. Reshetnevskiye chteniya. Krasnoyarsk, 2021. Vol. 1, pp. 71-72.

Timoshenko S. Strength of Materials. Part II. Advanced theory and problems. D. Van Nostrand Company Inc., 1930. 510 p.

Published

2023-01-12

Issue

Section

Articles

How to Cite

Goldobin, N. N., & Eremin, N. V. (2023). Mechanical analysis of folding of a tape spring in a flexible hinge design. Computational Continuum Mechanics, 15(4), 409-417. https://doi.org/10.7242/1999-6691/2022.15.4.31