MHD vortex flow in liquid metal near a spherical particle with different conductivity
DOI:
https://doi.org/10.7242/1999-6691/2022.15.3.27Keywords:
liquid metal, vortex flow, magnetohydrodynamics, particleAbstract
The flow of a liquid metal near a spherical particle, whose electrical conductivity differs from that of the liquid metal, is considered. A cylindrical vessel with metal is in an axial magnetic field and, accordingly, with an axial electric current flowing through it. If the conductivity of the particle is equal to the conductivity of the liquid, then the electric current flows along the magnetic field lines and there are no electromagnetic forces in the system. In the case of different conductivity, the electric field lines are either drawn to the particle or go around it, which causes the appearance of electromagnetic forces that generate a vortex flow of the metal. The flow consists of two toroidal vortices, in which the azimuthal motion develops in opposite directions. The poloidal flow in both vortices is arranged in such a way that the liquid on the axis of the cylinder always moves towards the particle. It is shown that the flow energy rapidly increases when the particle conductivity deviates from the liquid conductivity, and reaches asymptotes when the difference in conductivities turns out to be significant. So, with a relative difference in conductivity of only one percent, the energy of the azimuthal flow reaches 40% of the value corresponding to their dissimilarity by two orders of magnitude. At the same time, 80% of this value is achieved at a twofold difference. For a particle with reduced electrical conductivity, the effect is somewhat weaker than for a particle with increased electrical conductivity, but, on the whole, the structure of the emerging flow is similar. In the entire range of the considered values of the electromagnetic action parameter, the flow is unstable and generates fluctuations. As the impact grows, the emerging toroidal vortices become more compact, clinging to the particle, but the fluctuations intensify and capture an increasing volume around the particle.
Downloads
References
Branover G.G., Tsinober A.B. Magnitnaya gidrodinamika neszhimayemykh sred. M.: Nauka, 1970. 379 s.
Boyarevich V.V., Freyberg Ya.Zh., Shilova E.I., Shcherbinin E.V. Elektrovikhrevyye techeniya. Riga: Zinatne, 1985. 315 s.
Khripchenko S.Yu. Elektrovikhrevyye techeniya v kanalakh MGD-ustroystv. Ekaterinburg: UrO RAN, 2009. 260s.
Mandrykin S., Ozernykh V., Kolesnichenko I. Electro-vortex flow of liquid metal in a cylindrical cell with localized current supply and variable aspect ratio. Magnetohydrodynamics, 2020, vol. 56, pp. 81-90. https://doi.org/10.22364/mhd.56.2-3.13
Frick P., Mandrykin S., Eltishchev V., Kolesnichenko I. Electro-vortex flows in a cylindrical cell under axial magnetic field. J. Fluid Mech., 2022, vol. 949, A20. https://doi.org/10.1017/jfm.2022.746
Räbiger D., Zhang Y., Galindo V., Franke S., Willers B., Eckert S. The relevance of melt convection to grain refinement in Al–Si alloys solidified under the impact of electric currents. Acta Mater., 2014, vol. 79, pp. 327-338. https://doi.org/10.1016/j.actamat.2014.07.037
Kazak O.V., Semko A.N. Elektrovikhrevyye techeniya v dugovykh pechakh postoyannogo toka. Donetsk: Noulidzh, 2013. 134 s.
Mikhailov E.A., Teplyakov I.O. Analytical solution of the problem of the electrovortex flow in the hemisphere with finite size electrodes in the Stokes approximation. Moscow Univ. Phys., 2018, vol. 73, pp. 162-167. https://doi.org/10.3103/S0027134918020108
Kelley D.H., Weier T. Fluid mechanics of liquid metal batteries. Appl. Mech. Rev., 2018, vol. 70, 020801. https://doi.org/10.1115/1.4038699
Bojarevičs V., Freibergs J.A., Shilova E.I., Shcherbinin E.V. Electrically induced vortex flow at a point electrode and azimuthal rotation. Mechanics of fluids and transport processes. Springer, 1989. P. 120-153. https://doi.org/10.1007/978-94-009-1163-5_4
Stefani F., Galindo V., Kasprzyk C., Landgraf S., Seilmayer M., Starace. M., Weber N., Weier T. Magnetohydrodynamic effects in liquid metal batteries. IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 143, 012024. https://doi.org/10.1088/1757-899X/143/1/012024
Davidson P.A., Lindsay R.I. Stability of interfacial waves in aluminium reduction cells. J. Fluid Mech., 1998, vol. 362, pp. 273-295. https://doi.org/10.1017/S0022112098001025
Weber N., Beckstein P., Galindo V., Herreman W., Nore C., Stefani F., Weier T. Metal pad roll instability in liquid metal batteries. Mangetohydrodynamics, 2017, vol. 53, pp. 129-140. https://doi.org/10.22364/mhd.53.1.14
Weber N., Beckstein P., Herreman W., Horstmann G.M., Nore C., Stefani F., Weier T. Sloshing instability and electrolyte layer rupture in liquid metal batteries. Phys. Fluids, 2017, vol. 29, 054101. https://doi.org/10.1063/1.4982900
Leenov D., Kolin A. Theory of electromagnetophoresis. I. Magnetohydrodynamic forces experienced by spherical and symmetrically oriented cylindrical particles. J. Chem. Phys., 1954, vol. 22, pp. 683-688. https://doi.org/10.1063/1.1740149
Zhang L., Wang S., Dong A., Gao J., Damoah L.N.W. Application of electromagnetic (EM) separation technology to metal refining processes: A review. Metall. Mater. Trans. B, 2014, vol. 45, pp. 2153-2185. https://doi.org/10.1007/s11663-014-0123-y
Afshar M.R., Aboutaleb M.R., Isac M., Guthrie R.I.L. Mathematical modeling of electromagnetic separation of inclusions from magnesium melt in a rectangular channel. Mater. Lett., 2007, vol. 61, pp. 2045-2049. https://doi.org/10.1016/j.matlet.2006.08.012
Afshar M.R., Aboutaleb M.R. ,Guthrie R.I.L., Isac M. Modeling of electromagnetic separation of inclusions from molten metals. Int. J. Mech. Sci., 2010, vol. 52, pp. 1107-1114. https://doi.org/10.1016/j.ijmecsci.2009.11.003
Mamykin A.D., Losev G.L., Kolesnichenko I.V. Influence of electromagnetic force on two-phase flow. Vestnik Permskogo universiteta. Fizika – Bulletin of Perm University. Physics, 2018, no. 1(39), pp. 46-53. https://doi.org/10.17072/1994-3598-2018-1-46-53
Losev G., Mamykin A., Kolesnichenko I. Model of electromagnetic purification of liquid metal. Magnetohydrodynamics, 2021, vol. 57, pp. 73-84. https://doi.org/10.22364/mhd.57.1.6
Losev G., Mamykin A., Kolesnichenko I. Electromagnetic separation: concentration measurements. Magnetohydrodynamics, 2019, vol. 55, pp. 89-96. https://doi.org/10.22364/mhd.55.1-2.11
Kolesnichenko I. Investigation of electromagnetic force action on two-phase electrically conducting media in a flat layer. Magnetohydrodynamics, 2013, vol. 49, pp. 217-222. https://doi.org/10.22364/mhd.49.1-2.27
Shu D., Li T.-X., Sun B.-D., Zhou Y.-H., Wang J., Xu Z.-M. Numerical calculation of the electromagnetic expulsive force upon nonmetallic inclusions in an aluminum melt: Part I. Spherical particles. Metall. Mater. Trans. B, 2000, vol. 31, pp. 1527-1533. https://doi.org/10.1007/s11663-000-0037-8
Shu D., Li T.-X., Sun B.-D., Zhou Y.-H., Wang J., Xu Z.-M. Numerical calculation of the electromagnetic expulsive force upon nonmetallic inclusions in an aluminum melt: Part II. Cylindrical particles. Metall. Mater. Trans. B, 2000, vol. 31, pp. 1535-1540. https://doi.org/10.1007/s11663-000-0038-7
Mandrykin S., Kolesnichenko I. The influence of electric current application configuration on the electro-vortex flow structure of conductive medium in cylindrical cell. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 950, 012031. https://doi.org/10.1088/1757-899X/950/1/012031
Kolesnichenko I., Frick P., Eltishchev V., Mandrykin S., Stefani F. Evolution of a strong electrovortex flow in a cylindrical cell. Phys. Rev. Fluids, 2020, vol. 5, 123703. https://doi.org/10.1103/PhysRevFluids.5.123703
Govorukhin V.N., Filimonova A.M. Analysis of the structure of vortex planar flows and their changes with time. Vychisl. mekh. splosh. sred – Computational continuum mechanics, 2021, vol. 14, no. 4, pp. 367-376. https://doi.org/10.7242/1999-6691/2021.14.4.30
Mandrykin S.D., Teimurazov A.S. Turbulent convection of liquid sodium in an inclined cylinder of unit aspect ratio. Vychisl. mekh. splosh. sred – Computational continuum mechanics, 2018, vol. 11, no. 4, pp. 417-428. https://doi.org/10.7242/1999-6691/2018.11.4.32
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.