The numerical modeling of lava dome evolution at volcán de Colima using VOF and SPH methods

Authors

  • Igor’ Anatol’yevich Tsepelev Institute of Mathematics and Mechanics UB RAS
  • Il’ya Sergeyevich Starodubtsev Institute of Mathematics and Mechanics UB RAS; Ural Federal University

DOI:

https://doi.org/10.7242/1999-6691/2022.15.3.20

Keywords:

viscous flow, multiphase flow, Navier–Stokes equations, boundary value problem, numerical simulation, smooth particle hydrodynamics, volcanic eruption, volcan de Colima

Abstract

Lava flows from extrusive volcanic eruptions can have catastrophic consequences both for human life and the environment. Modeling such situations is an important scientific problem. The main driving forces in the evolution of the mentioned lava flows are gravitational forces, viscous friction forces on the surface of the spill, and the processes of crystallization of molten rocks into lava plateau, tubes, and domes. In this paper, the mathematical model of an extrusive volcanic eruption includes the Navier–Stokes equation, the incompressibility equation, the viscous phase transfer equation, as well as the corresponding initial and boundary conditions. Mathematical models of volcanic lava flows are considered and compared within the Euler (Volume Of Fluid – VOF) and Lagrange (Smooth Particle Hydrodynamic – SPH) formulations. ANSYS Fluent, OpenFOAM, and SPlisHSPlasH packages were used for computer simulation. Computer simulation algorithms for the problem are implemented in C++ language. Numerical modeling of the evolution of a real lava dome formed at the Colima volcano (Mexico) in February–March 2013 was carried out. For this experiment, information about the dynamics of lava dome growth, collected during the eruption, was used. It is shown how the computer simulation approach makes it possible to establish the dependence of the lava dome morphology on the rheology of a highly viscous fluid and the intensity of lava outflow.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено при поддержке РФФИ и DFG в рамках научного проекта № 20-51-12002.

Author Biographies

  • Igor’ Anatol’yevich Tsepelev, Institute of Mathematics and Mechanics UB RAS

    кфмн, снс

  • Il’ya Sergeyevich Starodubtsev, Institute of Mathematics and Mechanics UB RAS; Ural Federal University

    кфмн, зав. сектором

References

Costa A., Macedonio G. Computational modeling of lava flows: A review. Kinematics and dynamics of lava flows, ed. M. Manga, G. Ventura. Geological Society of America, 2005. P. 209-218. https://doi.org/10.1130/0-8137-2396-5.209

Cordonnier B., Lev E., Garel F. Benchmarking lava-flow models. Detecting, modelling and responding to effusive eruptions, ed. A.J.L. Harris, T. De Groeve, F. Garel, S.A. Carn. Geological Society of London, 2016. P. 425-445. https://doi.org/10.1144/SP426.7

Hirt C.W., Nichols B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 1981, vol. 39, pp. 201-225. https://doi.org/10.1016/0021-9991(81)90145-5

Monaghan J.J. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys., 1992, vol. 30, pp. 543-574.

Patankar S.V. Computation of conduction and duct flow heat transfer. CRC Press, 2019. 370 p.

Tsepelev I., Ismail-Zadeh A., Melnik O. Lava dome morphology inferred from numerical modeling. Geophys. J. Int., 2020, vol. 223, pp. 1597-1609. https://doi.org/10.1093/gji/ggaa395

Zobin V.M., Arámbula R., Bretón M., Reyes G., Plascencia I., Navarro C., Téllez A., Campos A., González M., León Z., Martínez A., Ramírez C. Dynamics of the January 2013–June 2014 explosive-effusive episode in the eruption of Volcán de Colima, México: insights from seismic and video monitoring. Bull. Volcanol., 2015, vol. 77, p. 31. https://doi.org/10.1007/s00445-015-0917-z

Walter T.R., Harnett C.E., Varley N., Bracamontes D.V., Salzer J., Zorn E.U., Bretón M., Arámbula R., Thomas M.E. Imaging the 2013 explosive crater excavation and new dome formation at Volcan de Colima with TerraSAR-X, time-lapse cameras and modelling. J. Volcanol. Geoth. Res., 2019, vol. 369, pp. 224-237. https://doi.org/10.1016/j.jvolgeores.2018.11.016

Nigmatulin R.I. Dynamics of multiphase media. Vol. 1. Hemisphere Pub. Corp., 1991. 532 p.

Chandrasekhar S. Hydrodynamic and hydromagnetic stability. Clarendon Press, 1961. 652 p.

Tsepelev I.A., Ismail-Zadeh A.T., Melnik O.E. Lava dome evolution at Volcán de Colima, México during 2013: Insights from numerical modeling. J. Volcanolog. Seismol., 2021, vol. 15, pp. 491-501. https://doi.org/10.1134/S0742046321060117

Korotkii A.I., Starodubtseva Yu.V., Tsepelev I.A. Gravitational flow of a two-phase viscous incompressible liquid. Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2021, vol. 27, no. 4, pp. 61-73. https://doi.org/10.21538/0134-4889-2021-27-4-61-73

Chevrel M.O., Platz T., Hauberet E., Baratoux D., Lavallée Y., Dingwell D.B. Lava flow rheology: A comparison of morphological and petrological methods. Earth Planet. Sci. Lett., 2013, vol. 384, pp. 109-120. https://doi.org/10.1016/j.epsl.2013.09.022

Lejeune A.-M., Richet P. Rheology of crystal-bearing silicate melts: An experimental study at high viscosity. J. Geophys. Res., 1995, vol. 100, pp. 4215-4229. https://doi.org/10.1029/94JB02985

Costa A., Caricchi L., Bagdassarov N. A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem. Geophys. Geosys., 2009, vol. 10, Q03010. https://doi.org/10.1029/2008GC002138

Mardles E.W.J. Viscosity of suspensions and the Einstein equation. Nature, 1940, vol. 145, p. 970. https://doi.org/10.1038/145970a0

Jeffrey D.J., Acrivos A. The rheological properties of suspensions of rigid particles. AIChE J., 1976, vol. 22, pp. 417-432. https://doi.org/10.1002/aic.690220303

https://www.ansys.com/products/fluids/ansys-fluent (accessed 25 August 2022)

Lister J.R. Viscous flows down an inclined plane from point and line sources. J. Fluid Mech., 1992, vol. 242, pp. 631-653. https://doi.org/10.1017/S0022112092002520

https://openfoam.org/ (accessed 25 August 2022)

Liu G.R., Liu M.B. Smoothed particle hydrodynamics: A meshfree particle method. World Scientific. 2003. 472 p. https://doi.org/10.1142/5340

Violeau D. Dissipative forces for Lagrangian models in computational fluid dynamics and application to smoothed-particle hydrodynamics. Phys. Rev. E, 2009, vol. 80, 036705. https://doi.org/10.1103/PhysRevE.80.036705

Bender J., Koschier D. Divergence-free SPH for incompressible and viscous fluids. IEEE Trans. Visual. Comput. Graph., 2016, vol. 23, pp. 1193-1206. https://doi.org/10.1109/TVCG.2016.2578335

Bender J., Kugelstadt T., Weiler M., Koschier D. Proc. of the MIG '19: Motion, Interaction and Games. Newcastle upon Tyne, United Kingdom, October 28-30, 2019. Art. 26. 10 p. https://doi.org/10.1145/3359566.3360077

Sandim M., Cedrim D., Nonato L.G., Pagliosa P., Paiva A. Boundary detection in particle-based fluids. Comput. Graph. Forum, 2016, vol. 35, pp. 215-224. https://doi.org/10.1111/cgf.12824

https://splishsplash.readthedocs.io/en/2.9.0/about.html (accessed 25 August 2022)

Published

2022-10-02

Issue

Section

Articles

How to Cite

Tsepelev, I. A., & Starodubtsev, I. S. (2022). The numerical modeling of lava dome evolution at volcán de Colima using VOF and SPH methods. Computational Continuum Mechanics, 15(3), 263-273. https://doi.org/10.7242/1999-6691/2022.15.3.20