Shell model of turbulent viscosity for the boundary layer
DOI:
https://doi.org/10.7242/1999-6691/2022.15.3.28Keywords:
numerical simulation of turbulence, shell models, boundary layerAbstract
The problem of numerical simulation of developed turbulent flows is usually reduced to the choice of one or another closure of the mean field equations. It is hardly possible to find a universal solution to this issue; nevertheless, the development of an approach based on general principles remains an active research topic. This paper proposes a model of turbulent viscosity described in terms of the characteristics of velocity field fluctuations calculated on the basis of shell models. These models reproduce correctly the scale distribution of the turbulent energy and the spectral energy fluxes for hydrodynamic flows of various physical nature. Shell models are constructed using symmetry properties and conservation laws of the complete system of equations, as well as an assumption on homogeneity and isotropy of turbulence. Phenomenological relations implying specific spectral laws are not involved. In the developed approach, we did an attempt to determine the turbulent viscosity, while maintaining the universality and flexibility of shell models. The resulting mathematical formulation is a set of models for large (mean field equation) and small (cascade model) scales, as well as closing relations. The model implements energy conjugation of variables of different scales, which provides a nonlinear relation of fields at different levels. Taking into account the influence of the mean field on the energy distribution of turbulent fluctuations is a distinctive feature of the proposed approach. Numerical solutions are obtained for the flow in a plane infinite channel at various Reynolds numbers. It is shown that the obtained results are consistent with modern concepts of the logarithmic profile of the velocity field in the boundary layer. The physical meaning of model parameters is substantiated. Asymptotic solutions that qualitatively correspond to the Prandtl model are found.
Downloads
References
Frik P.G. Turbulentnost’: podkhody i modeli. M.-Izhevsk: Regulyarnaya i khaoticheskaya dinamika, 2010. 332 p.
Tazraei P., Girimaji S.S. Scale-resolving simulations of turbulence: Equilibrium boundary layer analysis leading to near-wall closure modeling. Phys. Rev. Fluids, 2019, vol. 4, 104607. http://doi.org/10.1103/PhysRevFluids.4.104607
Duraisamy K., Iaccarino G., Xiao H. Turbulence modeling in the age of data. Annu. Rev. Fluid Mech., 2019, vol. 51, pp. 357-377. http://doi.org/10.1146/annurev-fluid-010518-040547
Yokoi N. Turbulence, transport and reconnection. Topics in magnetohydrodynamic topology, reconnection and stability theory, ed. D. MacTaggart, A. Hillier. Springer, 2020. P. 177-265. http://doi.org/10.1007/978-3-030-16343-3_6
Obukhov A.M. O nekotorykh obshchikh kharakteristikakh uravneniy dinamiki atmosfery [Some general characteristic equations of the dynamics of the atmosphere]. Izvestiya of the Academy of Sciences of the USSR. Atmospheric and Oceanic Physics, 1971, vol. 7, no. 7, pp. 695-704.
Lorenz E.N. Low order models representing realizations of turbulence. J. Fluid Mech., 1972, vol. 55, pp. 545-563. http://doi.org/10.1017/S0022112072002009
Gledzer E.B. System of hydrodynamic type admitting two quadratic integrals of motion. Sov. Phys. Dokl., 1973, vol. 18, pp. 216-217.
Desnyansky V.N., Novikov E.A. The evolution of turbulence spectra to the similarity regime. Izvestiya of the Academy of Sciences of the USSR. Atmospheric and Oceanic Physics, 1974, vol. 10, pp. 127-136.
Siggia E.D. Origin of intermittency in fully developed turbulence. Phys. Rev. A, 1977, vol. 15, pp. 1730-1750. http://doi.org/10.1103/PhysRevA.15.1730
Yamada M., Ohkitani K. Lyapunov spectrum of a chaotic model of three-dimensional turbulence. J. Phys. Soc. Jpn., 1987, vol. 56, pp. 4210-4213. http://doi.org/10.1143/JPSJ.56.4210
L’vov V.S., Podivilov E., Pomlyalov A., Procaccia I., Vandembroucq D. Improved shell model of turbulence. Phys. Rev. E, 1998, vol. 58, pp. 1811-1822. http://doi.org/10.1103/PhysRevE.58.1811
L’vov V.S., Podivilov E., Procaccia I. Hamiltonian structure of the Sabra shell model of turbulence: Exact calculation of an anomalous scaling exponent. EPL, 1999, vol. 46, pp. 609-612. http://doi.org/10.1209/epl/i1999-00307-8
Ditlevsen P.D. Symmetries, invariants, and cascades in a shell model of turbulence. Phys. Rev. E, 2000, vol. 62, pp. 484-489. http://doi.org/10.1103/PhysRevE.62.484
Benzi R., Biferale L., Tripiccione R., Trovatore E. (1+1)-dimensional turbulence. Phys. Fluids, 1997, vol. 9, pp. 2355-2363. http://doi.org/10.1063/1.869356
Frisch U. Turbulence. Cambridge University Press, 1995. 296 p.
Bohr T., Jensen M.H., Vulpiani A., Paladin G. Dynamical systems approach to turbulence. Cambridge University Press, 1998. 350 p.
Pope S.B. Turbulent flows. Cambridge University Press, 2000. 771 p.
Biferale L. Shell models of energy cascade in turbulence. Ann. Rev. Fluid Mech., 2003, vol. 35, pp. 441-468. http://doi.org/10.1146/annurev.fluid.35.101101.161122
Plunian F., Stepanov R., Frick P. Shell models of magnetohydrodynamic turbulence. Phys. Rep., 2013, vol. 523, pp. 1-60. http://doi.org/10.1016/j.physrep.2012.09.001
Frick P., Reshetnyak M., Sokoloff D. Combined grid-shell approach for convection in a rotating spherical layer. EPL, 2002, vol. 59, pp. 212-217. http://doi.org/10.1209/epl/i2002-00228-6
Frick P., Reshetnyak M., Sokoloff D. Cascade models of turbulence for the Earth’s liquid core. Dokl. Earth Sci., 2002, vol. 387, pp. 988-991.
Reshetnyak M.Yu., Shteffen B. Kaskadnyye modeli v bystrovrashchayushchikhsya dinamo-sistemakh [Cascade models in rapidly rotating dynamo systems]. Vych. met. programmirovaniye – Numerical Methods and Programming, 2006, vol. 7, no. 1, pp. 85-92.
Frick P., Stepanov R., Sokoloff D. Large- and small-scale interactions and quenching in an α2-dynamo. Phys. Rev. E, 2006, vol. 74, 066310. http://doi.org/10.1103/PhysRevE.74.066310
Stepanov R.A., Frick P.G., Sokoloff D.D. Coupling of mean-field equation and shell model of turbulence in the context of galactic dynamo problem. Vychisl. mekh. splosh. sred – Computational continuum mechanics, 2008, vol. 1, no. 4, pp. 97-108. http://doi.org/10.7242/1999-6691/2008.1.4.43
L’vov V.S., Pomyalov A., Tiberkevich V. Multizone shell model for turbulent wall bounded flows. Phys. Rev. E, 2003, vol. 68, 046308. http://doi.org/10.1103/PhysRevE.68.046308
Plunian F., Teimurazov A., Stepanov R., Verma M.K. Inverse cascade of energy in helical turbulence. J. Fluid Mech., 2020, vol. 895, A13. http://doi.org/10.1017/jfm.2020.307
Sadhukhan S., Samuel R., Plunian F., Stepanov R., Samtaney R., Verma M.K. Enstrophy transfers in helical turbulence. Phys. Rev. Fluids, 2019, vol. 4, 084607. http://doi.org/10.1103/PhysRevFluids.4.084607
Stepanov R., Golbraikh E., Frick P., Shestakov A. Helical bottleneck effect in 3D homogeneous isotropic turbulence. Fluid Dyn. Res., 2018, vol. 50, 011412. http://doi.org/10.1088/1873-7005/aa782e
Stepanov R., Golbraikh E., Frick P., Shestakov A. Hindered energy cascade in highly helical isotropic turbulence. Phys. Rev. Lett., 2015, vol. 115, 234501. http://doi.org/10.1103/PhysRevLett.115.234501
Schlichting H. Grenzschicht-Theorie [Boundary Layer Theory]. Verlag G. Braun. Karlsruhe, 1958. 603 p.
Shestakov A.V., Stepanov R.A., Frick P.G. Influence of rotation on cascade processes in helical turbulence. Vychisl. mekh. splosh. sred – Computational continuum mechanics, 2012, vol. 5, no. 2, pp. 193-198. http://doi.org/10.7242/1999-6691/2012.5.2.23
Shestakov A.V., Stepanov R.A., Frick P.G. On cascade energy transfer in convective turbulence. J. Appl. Mech. Tech. Phys., 2017, vol. 58, pp. 1171-1180. https://doi.org/10.1134/S0021894417070094
Gledzer E.B. Rotation and helicity effects in cascade models of turbulence. Dokl. Phys., 2008, vol. 53, pp. 216-220. https://doi.org/10.1134/S1028335808040101
Plunian F., Stepanov R. Cascades and dissipation ratio in rotating magnetohydrodynamic turbulence at low magnetic Prandtl number. Phys. Rev. E, 2010, vol. 82, 046311. http://doi.org/10.1103/PhysRevE.82.046311
Nikitin N.V., Nicoud F., Wasistho B., Squires K.D., Spalart P.R. An approach to wall modeling in large-eddy simulations. Phys. Fluids, 2000, vol. 12, pp. 1629-1632. http://doi.org/10.1063/1.870414
Yang X.I.A., Park G.I., Moin P. Log-layer mismatch and modeling of the fluctuating wall stress in wall-modeled large-eddy simulations. Phys. Rev. Fluids, 2017, vol. 2, 104601. http://doi.org/10.1103/PhysRevFluids.2.104601
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.