Removal of pollution accumulated in the process of wastewater discharge from the bottom layer of river systems
DOI:
https://doi.org/10.7242/1999-6691/2022.15.2.16Keywords:
water bodies, liquid waste discharge, pollution transfer and accumulation in a porous medium, water quality modelingAbstract
Three-dimensional numerical simulation has been performed to investigate the transport of impurities in a two-layer system “liquid-porous medium” for different hydrodynamic regimes of river systems. The dynamics of waste water containing heavy impurities in areas of industrial activity is modeled. The parameters of the numerical experiment correspond to the data of full-scale flow experiments in natural water bodies, part of the reservoir where the Solikamsk-Berezniki industrial hub is located. Due to the influx of brines, pollution accumulates in the hyporheic zone of the river, the fluid flow carries this pollution away through the porous medium, thus the problem is solved of washing out the brine distributed in the porous medium. The computational domain consists of a fluid mass (river) propagating over a porous medium (river bottom, hyporheic zone). It is shown that the concentration of polluting ingredients in the soil of the river bottom near the discharge points increases in the presence of "heavy" impurities. Such problems arise acutely when excess highly mineralized brines are discharged into water bodies located in the industrial areas with “heavy” wastewater, for which, due to significant intra-annual fluctuations in the water level and ice cover, the option with near-bottom wastewater disposal is considered preferable.
Downloads
References
Arle J., Wagner F. Effect of anthropogenic salinisation on the ecological status of macroinvertebrate assemblages in the Werra River (Thuringia, Germany). Hydrobiologia, 2013, vol. 701, pp. 129-148. https://doi.org/10.1007/s10750-012-1265-z
Salama R.B., Otto C.J., Fitzpatrick R.W. Contributions of groundwater conditions to soil and water salinization. Hydrogeology Journal, 1999, vol. 7, pp. 46-64. https://doi.org/10.1007/s100400050179
Wells M.G., Wettlaufer J.S. The long-term circulation driven by density currents in a two-layer stratified basin. J. Fluid Mech., 2007, vol. 572, pp. 37-58. https://doi.org/10.1017/S0022112006003478
Baldwin D.S., Rees G.N., Mitchell A.M., Watson G., Williams J. The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands, 2006, vol. 26, pp. 455-464.
Eilers R.G., Eilers W.D., Fitzgerald M.M. A salinity risk index for soils of the Canadian Prairies. Hydrogeology Journal, 1997, vol. 5, pp. 68-79. https://doi.org/10.1007/s100400050118
Khayrulina E., Bogush A., Novoselova L., Mitrakova N. Properties of alluvial soils of taiga forest under anthropogenic salinization. Forests, 2021, vol. 12, 321. https://doi.org/10.3390/f12030321
Lyubimova T.P., Lepikhin A.P., Parshakova Ya.N., Tsiberkin K.B. Numerical modeling of liquid-waste infiltration from storage facilities into surrounding groundwater and surface-water bodies. J. Appl. Mech. Tech. Phy., 2016, vol. 57, pp. 1208-1216. https://doi.org/10.1134/S0021894416070099
Baure M., Eichinger L., Elsass P., Kloppmann W., Wirsing G. Isotopic and hydrochemical studies of groundwater flow and salinity in the Southern Upper Rhine Graden. Int. J. Earth Sci., 2005, vol. 94, pp. 565-579. https://doi.org/10.1007/s00531-005-0500-5
Khayrulina E., Maksimovich N. Influence of drainage with high contents of water-soluble salts on the environment in the Verkhnekamskoe potash deposit, Russia. Mine Water Environ., 2018, vol. 37, pp. 595-603. https://doi.org/10.1007/s10230-017-0509-6
Fetisova N.F., Fetisov V.V., Maio M.D., Zekster I.S. Groundwater vulnerability assessment based on calculation of chloride travel time through the unsaturated zone on the area of the Upper Kama potassium salt deposit. Environ. Earth Sci., 2016, vol. 75, 681. https://doi.org/10.1007/s12665-016-5496-6
Andreichuk V., Eraso A., Domínguez M.C. A large sinkhole in the Verchnekamsky potash basin in the Urals. Mine Water Environ., 2000, vol. 19, pp. 2-18. https://doi.org/10.1007/BF02687261
Lepikhin A.P., Lyubimova T.P., Parshakova Ya.N., Tiunov A.A. Discharge of excess brine into water bodies at potash industry works. J. Min. Sci., 2012, vol. 48, pp. 390-397. https://doi.org/10.1134/S1062739148020220
Lyubimova T.P., Lepikhin A.P., Parshakova Ya.N. Numerical simulation of highly saline wastewater discharge into water objects to improve discharge devices. J. Appl. Mech. Tech. Phy., 2020, vol. 61, pp. 1250-1256. https://doi.org/10.1134/S002189442007007X
Gu R., Stefan H.G. Analysis of turbulent buoyant jet in density stratified water. J. Environ. Eng., 1988, vol. 114, pp. 878-897. https://doi.org/10.1061/(ASCE)0733-9372(1988)114:4(878)
Jirka G.H. Integral model for turbulent buoyant jets in unbounded stratified flows. Part I: Single round jet. Environ. Fluid Mech., 2004, vol. 4, pp. 1-56. https://doi.org/10.1023/A:1025583110842
Lai A.C.H., Yu D., Lee J.H.W. Mixing of a rosette jet group in a crossflow. J. Hydraul. Eng., 2011, vol. 137, pp. 787-803. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000359
Norman T.L., Revankar S.T. Buoyant jet and two-phase jet-plume modeling for application to large water pools. Nucl. Eng. Des., 2011, vol. 241, pp. 1667-1700. https://doi.org/10.1016/j.nucengdes.2011.02.015
Lyubimova T.P., Roux B., Luo S., Parshakova Y.N., Shumilova N.S. Modeling of the near-field distribution of pollutants coming from a coastal outfall. Nonlin. Processes Geophys., 2013, vol. 20, pp. 257-266. https://doi.org/10.5194/npg-20-257-2013
Lai C.C.K., Lee J.H.W. Initial mixing of inclined dense jet in perpendicular crossflow. Environ. Fluid Mech., 2014, vol. 14, pp. 25-49. https://doi.org/10.1007/s10652-013-9290-7
Lee J.H.W. Mixing of multiple buoyant jets. J. Hydraul. Eng., 2012, vol. 138, pp. 1008-1021. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000560
Lai A.C.H., Lee J.H.W. Dynamic interaction of multiple buoyant jets. J. Fluid Mech., 2012, vol. 708, pp. 539-575. https://doi.org/10.1017/jfm.2012.332
Harvey J.W., Bencala K.E. The effect of streambed topography on surface-subsurface water exchange in mountain catchments. Water Resour. Res., 1993, vol. 29, pp. 89-98. https://doi.org/10.1029/92WR01960
Sophocleous M. Interactions between groundwater and surface water: The state of the science. Hydrogeology Journal, 2002, vol. 10, pp. 52-67. https://doi.org/10.1007/s10040-001-0170-8
Boulton A.J., Datry T., Kasahara T., Mutz M., Stanford J.A. Ecology and management of the hyporheic zone: Stream-groundwater interactions of running waters and their floodplains. J. N. Am. Benthol. Soc., 2010, vol. 29, pp. 26-40. https://doi.org/10.1899/08-017.1
Hester E.T., Gooseff M.N. Moving beyond the banks: Hyporheic restoration is fundamental to restoring ecological services and functions of streams. Environ. Sci. Technol., 2010, vol. 44, pp. 1521-1525. https://doi.org/10.1021/es902988n
Krause S., Tecklenburg C., Munz M., Naden E. Streambed nitrogen cycling beyond the hyporheic zone: Flow controls on horizontal patterns and depth distribution of nitrate and dissolved oxygen in the upwelling groundwater of a lowland river. J. Geophys. Res.: Biogeosci., 2013, vol. 118, pp. 54-67. https://doi.org/10.1029/2012JG002122
Lewandowski J., Arnon S., Banks E. et al. Is the hyporheic zone relevant beyond the scientific community? Water, 2019, vol. 11, 2230. https://doi.org/10.3390/w11112230
Dent C.L., Grimm N.B., Martί E., Edmonds J.W., Henry J.C., Welter J.R. Variability in surfacesubsurface hydrologic interactions and implications for nutrient retention in an arid-land stream. J. Geophys. Res.: Biogeosci., 2007, vol. 112, G04004. http://dx.doi.org/10.1029/2007jg000467
Buffington J.M., Tonina D. Hyporheic exchange in mountain rivers II: Effects of channel morphology on mechanics, scales, and rates of exchange. Geography Compass, 2009, vol. 3, pp. 1038-1062. https://doi.org/10.1111/j.1749-8198.2009.00225.x
Cardenas M.B. Stream-aquifer interactions and hyporheic exchange in gaining and losing sinuous streams. Water Resour. Res., 2009, vol. 45, W06429. https://doi.org/10.1029/2008WR007651
Ruehl C.R., Fisher A.T., Los Huertos M., Wankel S.D., Wheat C.G., Kendall C., Hatch C.E., Shennan C. Nitrate dynamics within the Pajaro River, a nutrient-rich, losing stream. J. N. Am. Benthol. Soc., 2009, vol. 26, pp. 191-206. https://doi.org/10.1899/0887-3593(2007)26[191:NDWTPR]2.0.CO;2
Bardini L., Boano F., Cardenas M.B., Revelli R., Ridolfi L. Nutrient cycling in bedform induced hyporheic zones. Geochim. Cosmochim. Acta, 2012, vol. 84, pp. 47-61. https://doi.org/10.1016/j.gca.2012.01.025
Wu L., Singh T., Gomez-Velez J., Nutzmann G., Wörman A., Krause S., Lewandowski J. Impact of dynamically changing discharge on hyporheic exchange processes under gaining and losing groundwater conditions. Water Resour. Res., 2018, vol. 54, pp. 10076-10093. https://doi.org/10.1029/2018WR023185
Van der Molen D.T., Breeuwsma A., Boers P.C.M. Agricultural nutrient losses to surface water in the Netherlands: Impact, strategies, and perspectives. J. Environ. Qual., 1998, vol. 27, pp. 4-11. https://doi.org/10.2134/jeq1998.00472425002700010002x
Lewandowski J., Putschew A., Schwesig D., Neumann C., Radke M. Fate of organic micropollutants in the hyporheic zone of a eutrophic lowland stream: Results of a preliminary field study. Sci. Total Environ., 2011, vol. 409, pp. 1824-1835. https://doi.org/10.1016/j.scitotenv.2011.01.028
Engelhardt I., Barth J.A.C., Bol R., Schulz M., Ternes T.A., Schuth C., van Geldern R. Quantification of long-term wastewater fluxes at the surface water/groundwater-interface: An integrative model perspective using stable isotopes and acesulfame. Sci. Total Environ., 2014, vol. 466-467, pp. 16-25. https://doi.org/10.1016/j.scitotenv.2013.06.092
Brunke M., Gonser T. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology, 1997, vol. 37, pp. 1-33. https://doi.org/10.1046/j.1365-2427.1997.00143.x
Heberer T., Massmann G., Fanck B., Taute T., Dünnbier U. Behaviour and redox sensitivity of antimicrobial residues during bank filtration. Chemosphere, 2008, vol. 73, pp. 451-460. https://doi.org/10.1016/j.chemosphere.2008.06.056
Botter G., Basu N.B., Zanardo S., Rao P.S.C., Rinaldo A. Stochastic modeling of nutrient losses in streams: Interactions of climatic, hydrologic and biogeochemical controls. Water Resour. Res., 2010, vol. 46, W08509. https://doi.org/10.1029/2009WR008758
Huntscha S., Singer H.P., McArdell C.S., Frank C.E., Hollender J. Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2012, vol. 1268, pp. 74-83. https://doi.org/10.1016/j.chroma.2012.10.032
Lawrence J.E., Skold M.E., Hussain F.A., Silverman D.R., Resh V.H., Sedlak D.L., Luthy R.G., McCray J.E. Hyporheic zone in urban streams: A review and opportunities for enhancing water quality and improving aquatic habitat by active management. Environ. Eng. Sci., 2013, vol. 30, pp. 480-501. https://doi.org/10.1089/ees.2012.0235
Regnery J., Barringer J., Wing A.D., Hoppe-Jones C., Teerlink J., Drewes J.E. Start-up performance of a fullscale riverbank filtration site regarding removal of DOC, nutrients, and trace organic chemicals. Chemosphere, 2015, vol. 127, pp. 136-142. https://doi.org/10.1016/j.chemosphere.2014.12.076
Schaper J.L., Posselt M., McCallum J.L., Banks E.W., Hoehne A., Meinikmann K., Shanafield M.A., Batelaan O., Lewandowski J. Hyporheic exchange controls fate of trace organic compounds in an urban stream. Environ. Sci. Technol., 2018, vol. 52, pp. 12285-12294. https://doi.org/10.1021/acs.est.8b031177
Schaper J.L., Posselt M., Bouchez C., Jaeger A., Nuetzmann G., Putschew A., Singer G., Lewandowski J. Fate of trace organic compounds in the hyporheic zone: Influence of retardation, the benthic biolayer, and organic carbon. Environ. Sci. Technol., 2019, vol. 53, pp. 4224-4234. https://doi.org/10.1021/acs.est.8b06231
Kasahara T., Wondzell S.M. Geomorphic controls on hyporheic exchange flow in mountain streams. Water Resour. Res., 2003, vol. 39, SBH 3. https://doi.org/10.1029/2002WR001386
Peterson E.W., Sickbert T.B. Stream water bypass through a meander neck, laterally extending the hyporheic zone. Hydrogeology Journal, 2006, vol. 14, pp. 1443-1451. https://doi.org/10.1007/s10040-006-0050-3
Gariglio F.P., Tonina D., Luce C.H. Spatiotemporal variability of hyporheic exchange through a pool-riffle pool sequence. Water Resour. Res., 2013, vol. 49, pp. 7185-7204. https://doi.org/10.1002/wrcr.20419
Fox A., Boano F., Arnon S. Impact of losing and gaining streamflow conditions on hyporheic exchange fluxes induced by dune-shaped bed forms. Water Resour. Res., 2014, vol. 50, pp. 1895-1907. https://doi.org/10.1002/2013WR014668
Cardenas M.B., Wilson J.L. Exchange across a sediment–water interface with ambient groundwater discharge. J. Hydrol., 2007, vol. 346, pp. 69-80. https://doi.org/10.1016/j.jhydrol.2007.08.019
Cardenas M.B., Wilson J.L. Thermal regime of dune-covered sediments under gaining and losing water bodies. J. Geophys. Res.: Biogeosci., 2007, vol. 112, G04013. http://dx.doi.org/10.1029/2007jg000485
Jin G., Tang H., Li L., Barry D.A. Hyporheic flow under periodic bed forms influenced by low-density gradients. Geophys. Res. Lett., 2011, vol. 38, L22401. https://doi.org/10.1029/2011GL049694
Trauth N., Schmidt C., Maier U., Vieweg M., Fleckenstein J.H. Coupled 3-D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool-riffle system. Water Resour. Res., 2013, vol. 49, pp. 5834-5850. https://doi.org/10.1002/wrcr.20442
Trauth N., Schmidt C., Vieweg M., Maier U., Fleckenstein J.H. Hyporheic transport and biogeochemical reactions in pool-riffle systems under varying ambient groundwater flow conditions. J. Geophys. Res.: Biogeosci., 2014, vol. 119, pp. 910-928. https://doi.org/10.1002/2013JG002586
Li B., Liu X., Kaufman M.H., Turetcaia A., Chen X., Cardenas M.B. Flexible and modular simultaneous modeling of flow and reactive transport in rivers and hyporheic zones. Water Resour. Res., 2020, vol. 56, e2019WR026528. https://doi.org/10.1029/2019WR026528
Kinzelbach W. Numerische Methoden zur Modellierung des Transports von Schadstoffen im Grundwasser [Numerical methods for modeling the transport of pollutants in groundwater]. München, Oldenbourg Wissenschaftsverlag, 1992. 343 p.
Broecker T., Sobhi Gollo V., Fox A., Lewandowski J., Nützmann G., Arnon S., Hinkelmann R. High-resolution integrated transport model for studying surface water-groundwater interaction. Groundwater, 2021, vol. 59, pp. 488-502. https://doi.org/10.1111/gwat.13071
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.