Analytical and numerical assessments of probabilities of fatigue fracture of pipeline components under internal pressure
DOI:
https://doi.org/10.7242/1999-6691/2021.14.4.31Keywords:
strength, fracture toughness, failure probability, Monte-Carlo methodAbstract
The paper presents analytical and numerical approaches to assessing the probability of failure of structural components of technical systems subjected to cyclic loading. The kinetics of the crack is described by the modified Paris equation. The analytical solution is based on the inverse extrapolation of the critical crack depth. In this case, the only probabilistic parameter is considered to be the initial crack depth, which is assumed to be distributed according to an exponential law. The numerical solution uses the Monte-Carlo method. The initial crack depth, fracture toughness of the structural material, and parameters C and m of the Paris equation are taken as probabilistic parameters. For the statistical description of the process of fatigue crack growth in structural components, a computer code was developed in the Matlab environment, which allows using appropriate random number generators to simulate various laws of distribution of random parameters, including the laws of uniform density, exponential law, normal law, Weibull's law, etc. An example of analytical and numerical calculation of the probability of fatigue failure of a pipeline component containing an axial crack on the inner surface and loaded with internal pressure is given. Comparison of the obtained results of analytical and numerical solutions allows us to conclude that an approximate analytical estimate of the fracture probability can be used for preliminary calculations at the design stage of structural components, as well as for obtaining a prior estimates of the fracture probability when implementing Bayesian updating procedures for specifying the fracture probability and determining the frequency of technical inspections of the condition of the components under consideration as part of the implementation of risk-oriented approaches to ensuring their strength and safety.
Downloads
References
Getman A.F. Resurs ekspluatatsii sosudov i truboprovodov AES [Service life of vessels and pipelines of nuclear power stations]. Moscow, Energoatomizdat, 2000. 427 p.
Matvienko Yu.G., Kuzmin D.A., Reznikov D.O., Potapov V.V. Otcenka veroyaatnosti ustalostnogo razrusheniya konstruktsionnykh elementov s uchetom statisticheskogo razbrosa mekhanicheskikh kharacteristic protchosti materiala i ostatochnoy defectnosti [Assessment of the probability of fatigue fracture with accounting for the statistical scatter of mechanical properties of the material and the residual defectness of structural components]. Problemi mashinostroyeniya i nadegnosti mashin – Journal of Machinery Manufacture and Reliability, 2021, no. 4, pp. 24-36. https://doi.org/10.31857/S0235711921040076
Matvienko Yu.G., Kuzmin D.A., Reznikov D.O., Potapov V.V. Assessment of the probability of fatigue fracture of structural components subjected to deterministic and stochastic loading with accounting for the scatter of the initial size of cracks. Zavodskaya laboratoria. Diagnostika materialov – Industrial Laboratory. Diagnostics of Materials, 2021, vol. 87, no. 10, pp. 44-53. https://doi.org/10.26896/1028-6861-2021-87-10-44-53
Reznikov D.O. Correlation between deterministic and probabilistic approaches in assessment of structural strength of complex technical systems. Problemy Mashinostroeniya i Avtomatizatsii – Journal of Machinery Manufacture and Reliability, 2018, no. 3, pp. 61-69.
Bolotin V.V. Resurs mashin i konstruktsiy [Service life of machines and structures]. Moscow, Mashinostroyeniye, 1990. 448 p.
Makhutov N.A. Prochnost’ i bezopasnost’: fundamental’nyye i prikladnyye issledovaniya [Strength and safety: basic and applied developments]. Novosibirsk, Nauka, 2008. 528 p.
Besuner P.M. Probabilistic fracture mechanics. Probabilistic fracture mechanics and reliability, ed. J.W. Provan. Springer, 1987. Pp. 387-436. https://doi.org/10.1007/978-94-017-2764-8_9
Harris D.O. Probabilistic fracture mechanics. Probabilistic structural mechanics handbook, ed. C. Sundararajan. Springer, 1995. Pp. 106-145. https://doi.org/10.1007/978-1-4615-1771-9_6
Тimashev S.А., Bushinskaya А.V., Мalyukova М.G., Poluyan L.V. Tselostnost’ i bezopasnost’ truboprovodnykh sistem [Integrity and safety of pipeline systems]. Ekaterinburg, UrO RAN, 2013. 590 p.
Makhutov N.A., Permyakov V.N. Resurs bezopasnoy ekspluatatsii sosudov i truboprovodov [Service life of safe operation of pressure vessels and pipelines]. Novosibirsk, Nauka, 2005. 516 p.
Lepikhin A.M., Makhutov N.A., Moskvichev V.V., Doronin S.V. Veroyatnostnoye modelirovaniye dokriticheskogo rosta treshchin i otsenka resursa konstruktsiy [Probalistic modeling of the subcritical crack growth and the assessment of the structure service life]. Problemi mashinostroyeniya i nadegnosti mashin – Journal of Machinery Manufacture and Reliability, 1999, no. 5, pp. 117-123.
Lepikhin A.M. Veroyatnostnoye modelirovaniye rosta treshchin pri tsiklicheskom nagruzhenii [Probalistic modeling of crack growth under cyclic loading]. Zavodskaya laboratoriya. Diagnostika materialov – Industrial Laboratory. Diagnostics of Materials, 1996, vol. 62, no. 3, pp. 43-45.
Lepikhin A., Moskvichev V., Doronin S. Statistical fracture modeling of weld joint for nuclear reactor components. Appl. Fract. Mech., 1998, vol. 29, pp. 103-107. https://doi.org/10.1016/S0167-8442(98)00022-6
Mikheevskiy S., Bogdanov S., Glinka G. Statistical analysis of fatigue crack growth based on the unigrow model. ICAF 2011 Structural integrity: Influence of efficiency and green imperatives, ed. J. Komorowski. Springer, 2011. Pp. 415-425. https://doi.org/10.1007/978-94-007-1664-3_33
Bogdanov S., Mikheevskiy S., Glinka G. Probabilistic analysis of the fatigue crack growth based on the application of the Monte-Carlo method to unigrow model. Materials Performance and Characterization, 2014, vol. 3, no. 3, pp. 214-231. https://doi.org/10.1520/MPC20130066
Kim J.-K., Shim D.S. Probabilistic analysis on variability of fatigue crack growth using the Markov chain. KSME International Journal, 1998, vol. 12, pp. 1135-1142. https://doi.org/10.1007/BF02942587
Сhang H., Shen M., Yang X., Hou J. Uncertainty modeling of fatigue crack growth and probabilistic life prediction for welded joints of nuclear stainless steel. Materials, 2020, vol. 13, 3192. https://doi.org/10.3390/ma13143192
Chandra Gope P., Kabdwal A. Probabilistic aspects of fatigue crack growth parameters under single overload in 6061-T6 aluminium alloys. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 653, 012019. https://doi.org/10.1088/1757-899X/653/1/012019
Khaleel M.A., Simonen F.A. A model for predicting vessel failure probabilities including the effects of service inspection and flaw sizing errors. Eng. Des., 2000, vol. 200, pp. 353-369. https://doi.org/10.1016/S0029-5493(00)00244-2
Chang S.-J. Probability of fracture for HFIR pressure vessel caused by random crack size or by random toughness. Pressure Vessel Technol., 1994, vol. 116, pp. 24-29. https://doi.org/10.1115/1.2929554
Matviyenko G. Modeli i kriterii mekhaniki razrusheniya [Models and criteria of fracture mechanics]. Moscow, Fizmatlit, 2006. 328 p.
Karandikar J.M., Kim N.H., Schmitz T.L. Prediction of remaining useful life for fatigue-damaged structures using Bayesian inference. Fract. Mech., 2012, vol. 96, pp. 588-605. https://doi.org/10.1016/j.engfracmech.2012.09.013
Khalili H., Oterkus S., Barltrop N., Bharadwaj U. Different Bayesian methods for updating the fatigue crack size distribution in a tubular joint. Offshore Mech. Arct. Eng., 2021, vol. 143, 021702. https://doi.org/10.1115/1.4048155
Normy rascheta na prochnost’ oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok (PNAE G-7-002-86) [Strength design codes for equipment and pipelines of nuclear power installations]. Moscow, Energoatomizdat, 1989. 525 p. https://docs.cntd.ru/document/1200037730 (Date of application10.2021)
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.