Criterion for elastoplastic failure of bimetallic plate with edge crack of transverse shear at the boundary of the materials joint
DOI:
https://doi.org/10.7242/1999-6691/2021.14.3.28Keywords:
brittle, quasi-brittle, quasi-tough and ductile fracture, elastoplastic materials, ultimate deformationAbstract
The initiation of a transverse shear edge crack in elastoplastic materials with the limiting strain is considered. The crack propagation criterion is formulated using a modified Leonov-Panasyuk-Dugdale model using the additional parameter - the width of the plasticity zone. The coupled quasi-brittle fracture criterion for mode II cracks in an elastoplastic material is formulated under conditions of small-scale yield in the presence of a singular feature of the stress field in the vicinity of the crack tip. The coupled fracture criterion includes the deformation criterion, which is formulated at the crack tip, as well as the force criterion, which is formulated at the model crack tip. The lengths of the initial and model cracks differ by the length of the prefracture zone. The sequential analysis of the possibility of applying the proposed fracture criterion in determining the critical loads for solids containing edge cracks of transverse shear at the interface of different media is performed. Quasi-brittle fracture diagrams are constructed for a composite plate with an edge crack under plane strain and plane stress conditions. he analysis of the parameters included in the proposed model of quasi-brittle fracture is carried out. The model parameters are proposed to be selected by approximation of simple shear diagram and critical stress intensity factor. The critical loads were found numerically for the quasi-ductile and ductile fracture types. The finite element method is used to solve the problem of drawing out a reinforcing layer from a metal composite under quasi-static loading. The process of propagation of plastic zones in the vicinity of the crack tip is described consistently. It is shown that the shapes of the constructed plastic zones differ significantly from the well-known classical concepts.
Downloads
References
Berto F., Lazzarin P. Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches. Sci. Eng. R Rep., 2014, vol. 75, pp. 1-48. https://doi.org/10.1016/j.mser.2013.11.001">https://doi.org/10.1016/j.mser.2013.11.001
Zhu X.-K., Joyce J.A. Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Fract. Mech., 2012, vol. 85, pp. 1-46. https://doi.org/10.1016/j.engfracmech.2012.02.001">https://doi.org/10.1016/j.engfracmech.2012.02.001
Leguillon D. Strength or toughness? A criterion for crack onset at a notch. J. Mech. Solid., 2002, vol. 21, pp. 61-72. https://doi.org/10.1016/S0997-7538(01)01184-6">https://doi.org/10.1016/S0997-7538(01)01184-6
Newman J.C., James M.A., Zerbst U. A review of the CTOA/CTOD fracture criterion. Fract. Mech., 2003, vol. 70, pp. 371-385. https://doi.org/10.1016/S0013-7944(02)00125-X">https://doi.org/10.1016/S0013-7944(02)00125-X
Weißgraeber P., Leguillon D., Becker W. A review of finite fracture mechanics: crack initiation at singular and non-singular stress raisers. Appl. Mech., 2016, vol. 86, pp. 375-401. https://doi.org/10.1007/s00419-015-1091-7">https://doi.org/10.1007/s00419-015-1091-7
Zhu X.K., Chao Y.J. Specimen size requirements for two-parameter fracture toughness testing. J. Fract., 2005, vol.135, pp. 117-136. https://doi.org/10.1007/s10704-005-3946-3">https://doi.org/10.1007/s10704-005-3946-3
Meliani M.H., Matvienko Y.G., Pluvinage G. Two-parameter fracture criterion (Kρ,c-Tef,c) based on notch fracture mechanics. J. Fract., 2011, vol. 167, pp. 173-182. https://doi.org/10.1007/s10704-010-9542-1">https://doi.org/10.1007/s10704-010-9542-1
Newman Jr. J.C., Newman III J.C. Validation of the Two-Parameter Fracture Criterion using finite-element analyses with the critical CTOA fracture criterion. Fract. Mech., 2015, vol. 136, pp. 131-141. https://doi.org/10.1016/j.engfracmech.2015.01.021">https://doi.org/10.1016/j.engfracmech.2015.01.021
Warren J.M., Lacy T., Newman Jr. J.C. Validation of the Two-Parameter Fracture Criterion using 3D finite-element analyses with the critical CTOA fracture criterion. Fract. Mech., 2016, vol. 151, pp. 130-137. https://doi.org/10.1016/j.engfracmech.2015.11.007">https://doi.org/10.1016/j.engfracmech.2015.11.007
Matvienko Y.G. Two-parameter fracture mechanics in contemporary strength problems. Mach. Manuf. Reliab., 2013, vol.42, pp. 374-381. https://doi.org/10.3103/S1052618813050087">https://doi.org/10.3103/S1052618813050087
Matvienko Yu.G., Nikishkov G.P. Two-parameter J-A concept in connection with crack-tip constraint. Appl. Fract. Mech., 2017, vol. 92, pp. 306-317. https://doi.org/10.1016/j.tafmec.2017.04.007">https://doi.org/10.1016/j.tafmec.2017.04.007
Nikishkov G.P., Matvienko Yu.G. Elastic-plastic constraint parameter a for test specimens with thickness variation. Fatigue Fract. Engng. Mater. Struct., 2016, vol. 39, pp. 939-949. https://doi.org/10.1111/ffe.12390">https://doi.org/10.1111/ffe.12390
Matvienko Y.G., Morozov E.M. Two basic approaches in a search of the crack propagation angle. Fatigue Fract. Engng. Mater. Struct., 2017, vol. 40, pp. 1191-1200. https://doi.org/10.1111/ffe.12583">https://doi.org/10.1111/ffe.12583
Popova N.S., Morozov E.M., Matvienko Y.G. Predicting the crack path in a wedge under a concentrated tensile force by means of variational principle. Frattura ed Integrità Strutturale, 2019, vol. 13, pp. 267-271. https://doi.org/10.3221/IGF-ESIS.49.26">https://doi.org/10.3221/IGF-ESIS.49.26
Guo W. Three-dimensional analyses of plastic constraint for through-thickness cracked bodies. Fract. Mech., 1999, vol. 62, pp. 383-407. https://doi.org/10.1016/S0013-7944(98)00102-7">https://doi.org/10.1016/S0013-7944(98)00102-7
Wang X. Elastic T-stress for cracks in test specimens subjected to non-uniform stress distributions. Fract. Mech., 2002, vol. 69, pp. 1339-1352. https://doi.org/10.1016/S0013-7944(01)00149-7">https://doi.org/10.1016/S0013-7944(01)00149-7
Wang X., Lewis T., Bell R. Estimations of the T-stress for small cracks at notches. Fract. Mech., 2006, vol. 73, pp. 366-375. https://doi.org/10.1016/j.engfracmech.2005.06.009">https://doi.org/10.1016/j.engfracmech.2005.06.009
Nazarali Q., Wang X. The effect of T-stress on crack-tip plastic zones under mixed-mode loading conditions. Fatigue Fract. Engng. Mater. Struct., 2011, vol. 34, pp. 792-803. https://doi.org/10.1111/j.1460-2695.2011.01573.x">https://doi.org/10.1111/j.1460-2695.2011.01573.x
Cicero S., Madrazo V., Carrascal I.A. Analysis of notch effect in PMMA using the theory of critical distances. Fract. Mech., 2012, vol. 86, pp. 56-72. https://doi.org/10.1016/j.engfracmech.2012.02.015">https://doi.org/10.1016/j.engfracmech.2012.02.015
Kornev V.М. Estimation diagram of quasi-brittle fracture for bodies with a hierarchy of structures. Multiscale necessary and sufficient fracture criteria. mezomekh. – Physical Mesomechanics, 2010, vol. 13, no. 1, pp. 47-59.
Kornev V.М., Demeshkin А.G. Quasi-brittle fracture diagram of structured bodies in the presence of edge cracks. Appl. Mech. Tech. Phy., 2011, vol. 52, pp. 975-985. https://doi.org/10.1134/S0021894411060162">https://doi.org/10.1134/S0021894411060162
Kornev V.М. Critical fracture curves and effective structure diameter of brittle and quasi-brittle materials. mezomekh. – Physical Mesomechanics, 2013, vol. 16, no. 5, pp. 25-34.
Leonov M.Ya., Panasyuk V.V. Razvitiye mel’chayshikh treshchin v tverdom tele [Small cracks growth in a solids]. Prikladnaya mekhanika – International Applied Mechanics, 1959, vol. 5, no. 4, pp. 391-401.
Dugdale D.S. Yielding of steel sheets containing slits. Mech. Phys. Solid., 1960, vol. 8, pp. 100-104. https://doi.org/10.1016/0022-5096(60)90013-2">https://doi.org/10.1016/0022-5096(60)90013-2
Neuber G. Kerbspannunglehre: Grunglagen fur GenaueSpannungsrechnung [Notch Stress Theory: Basics for Exact Stress Calculation]. Springer-Verlag, 1937. 160 p.
Novozhilov V.V. On a necessary and sufficient criterion for brittle strength. Appl. Math. Mech., 1969, vol. 33,
pp. 201-210. https://doi.org/10.1016/0021-8928(69)90025-2">https://doi.org/10.1016/0021-8928(69)90025-2
Anderson T.L. Fracture mechanics: Fundamentals and applications. CRC Press, 2005. 680 p.
Gross D., Seelig T. Fracture mechanics. Springer, 2006. 320 p.
Savruk M.P. Mekhanika razrusheniya i prochnost’ materialov. T. 2. Koeffitsiyenty intensivnosti napryazheniy v telakh s treshchinami [Fracture mechanics and strength of materials. Vol. 2. Stress intensity factors in bodies with cracks]. Kiyev, Nauk. dumka, 1988. 619 p.
Astaf’yev V.I., Radayev Yu.N., Stepanova L.V. Nelineynaya mekhanika razrusheniya [Non-linear fracture mechanics]. Samara: Samara University, 2001. 632 p.
England A.H. A Crack Between Dissimilar Media. Appl. Mech., 1965, vol. 32, pp. 400-402. https://doi.org/10.1115/1.3625813">https://doi.org/10.1115/1.3625813
Erdogan F. Stress distribution in bonded dissimilar materials with cracks. Appl. Mech., 1965, vol. 32, pp. 403-410. https://doi.org/10.1115/1.3625814">https://doi.org/10.1115/1.3625814
Rice J.R., Sih G.C. Plane problems of cracks in dissimilar media. Appl. Mech., 1965, vol. 32, pp. 418-423. https://doi.org/10.1115/1.3625816">https://doi.org/10.1115/1.3625816
Sih G.C., Chen E.P. Cracks in composite materials. A compilation of stress solutions for composite systems with cracks. Springer, 1981. 620 p. https://doi.org/10.1007/978-94-009-8340-3">https://doi.org/10.1007/978-94-009-8340-3
Rice J.R. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Appl. Mech., 1968, vol. 35, pp. 379-386. https://doi.org/10.1115/1.3601206">https://doi.org/10.1115/1.3601206
Cherepanov G.P. Vychisleniye invariantnykh integralov v osobykh tochkakh [Computing the invariant integrals in specific locations] // Vychislitel’nyye metody v mekhanike razrusheniya [Computational methods in the mechanics of fracture], ed. S. Atluri. Moscow, Mir, 1990. Pp. 350-364.
Gallo P., Berto F. Some considerations on the J-integral under elastic-plastic conditions for materials obeying a Ramberg–Osgood law. Mesomech., 2015, vol. 18, pp. 298-306. https://doi.org/10.1134/S1029959915040037">https://doi.org/10.1134/S1029959915040037
Murakami Y. (ed.) Stress intensity factors handbook. Pergamon Press, 1987. 1456 p.
Astapov N.S., Kornev V.M., Kurguzov V.D. Delamination model for a composite with a crack. mezomekh. – Physical Mesomechanics, 2016, vol. 19, no. 4, pp. 49-57.
Korobeynikov S.N. Nelineynoye deformirovaniye tverdykh tel [Nonlinear deformation of solids]. Novosibirsk: Izd-vo SO RAN, 2000. 262 p.
MARC 2018. Volume A: Theory and user information. MSC.Software Corporation, 2018. 1008 p.
Kurguzov V.D., Kornev V.M., Astapov N.S. Fracture model of bi-material under exfoliation. Numerical experiment. MKMK – Journal on Composite Mechanics and Design, 2011, vol. 17, no. 4, pp. 462-473.
Kornev V.M., Kurguzov V.D., Astapov N.S. Fracture model of bimaterial under delamination of elasto-plastic structured media. Compos. Mater., 2013, vol. 20, pp. 129-143. https://doi.org/10.1007/s10443-012-9259-6">https://doi.org/10.1007/s10443-012-9259-6
Kurguzov V.D., Nemirovskiy Yu.V. Modelirovaniye dinamicheskikh protsessov zabivki ili izvlecheniya svay iz grunta [Simulation of dynamic processes of driving or extracting piles from soil]. vuzov. Stroitel’stvo – News of higher educational institutions. Construction, 2011, no. 7, pp. 82-90.
Kurguzov V.D., Nemirovsky Yu.V. Mathematical model of dynamic extract of plastic-rigid metal fiber from metal composite. Izvestiya Altayskogo gosudarstvennogo universiteta – Izvestiya of Altai State University, 2012, no. 1/1, pp. 69-71.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.