Influence of geometry and configuration of the spherical sliding layer of bridge bearings on the structure working capacity
DOI:
https://doi.org/10.7242/1999-6691/2021.14.3.24Keywords:
bridge structures, spherical bearing, geometric configuration, contact, friction, polymeric materials, full-scale and numerical modelingAbstract
Spherical bearing contact units consist of an upper steel plate with a spherical segment, a lower steel plate and antifriction polymer sliding layers (spherical and flat). Manufacturers produce the units with different positions of the flat and spherical sliding layer relative to the steel plates of the bearing. However, the effect of the antifriction layer position in the contact unit on the deformation behavior of the structure has not yet been evaluated. In this paper, the influence of the spherical sliding layer position relative to the steel structural elements on their frictional interaction is considered. Two variants associated with the position of the spherical antifriction layer are examined: the sliding layer is applied to the spherical steel segment, and it is located in the spherical notch of the lower steel plate. The design of the spherical bearings includes an interlayer made of radiation-modified fluoroplastic F-4 (no filling). The support unit with an interlayer located in the lower steel plate corresponds to the bearing model L-100 manufactured by AlfaTech LLC (Perm). The L-100 bearing is designed for a normative vertical load of 1000 kN. The maximum length and height of the structure are 155 and 54 mm, respectively, and the interlayer thickness is 4 mm. The support unit with an interlayer applied to the spherical segment is modeled with geometrical dimensions similar to those of the L-100. The standard angle of inclination of the antifriction layer end face is 30°. It was found that the detachment of the mating surfaces by more than 2% of the contact area occurs at a standard angle of the sliding layer end face in the case when the layer is applied to the spherical segment. Therefore, the influence of the inclination angle of the antifriction layer end face on the bearing deformation is considered within the framework of this work. The advantages of the spherical bearing classical design were established in a series of numerical experiments: a more uniform distribution of contact parameters over the mating surfaces, a large area of complete adhesion of the mating surfaces, small deformation of the end face of the sliding layer, etc. Based on the obtained results, the angles of inclination of the end face of the sliding layer were determined, which made it possible to achieve optimal distribution of the parameters of contact zones and the deformation characteristics of the bearings with two variants of the antifriction layer positions.
Downloads
References
Janic’ M. Advanced transport systems. Springer, 2014. 408 p. https://doi.org/10.1007/978-1-4471-6287-2">https://doi.org/10.1007/978-1-4471-6287-2
Reutov E.V., Polozkov A.I. Russian roads: reality and prospects. Transportnoye delo Rossii – Transport business of Russia, 2020, no. 2, pp. 201-203.
Pryadko I.P. The role of highways in creating a biosphere-compatible urban space: Russian metropolitan experience. Biosfernaya sovmestimost’: chelovek, region, tekhnologii – Biospheric compatibility: human, region, technologies, 2019, no. 2(26), pp. 111-122. https://doi.org/10.21869/23-11-1518-2019-26-2-111-122">https://doi.org/10.21869/23-11-1518-2019-26-2-111-122
Singh S., Martinetti A., Majumdar A., van Dongen L.A.M. (ed.) Transportation systems: Managing performance through advanced maintenance engineering. Springer, 2019. 221 p. https://doi.org/10.1007/978-981-32-9323-6">https://doi.org/10.1007/978-981-32-9323-6
Eremin A.V., Volokitina O.A., Volokitin V.P. Management of the condition of bridge structures within the implementation of the national project "Safe and quality car roads". Vysokiye tekhnologii v stroitel’nom komplekse – High technologies in construction complex, 2020, no. 1, pp. 12-17.
Garcia-Sanchez D., Fernandez-Navamuel A., Sánchez D.Z., Alvear D., Pardo D. Bearing assessment tool for longitudinal bridge performance. Civil. Struct. Health Monit., 2020, vol. 10, pp. 1023-1036. https://doi.org/10.1007/s13349-020-00432-1">https://doi.org/10.1007/s13349-020-00432-1
Locke R., Redmond L., Atamturktur S. Techniques for simulating frozen bearing damage in bridge structures for the purpose of drive-by health monitoring. Dynamics of civil structures, ed. S. Pakzad. Springer, 2021. Pp. 39-52. https://doi.org/10.1007/978-3-030-47634-2_6">https://doi.org/10.1007/978-3-030-47634-2_6
Blinkin M., Koncheva E. (ed.) Transport systems of Russian cities: Ongoing transformations. Springer, 2016. 299 p. https://doi.org/10.1007/978-3-319-47800-5">https://doi.org/10.1007/978-3-319-47800-5
Ovchinnikov I.I., Maystrenko I.Yu., Ovchinnikov I.G., Uspanov A.M. Failures and collapses of bridge constructions, analysis of their causes. Part 4. Transportnyye sooruzheniya – Russian Journal of Transport Engineering, 2018, vol. 5, no. 1, 25 p. http://dx.doi.org/10.15862/05SATS118">http://dx.doi.org/10.15862/05SATS118
Proske D. Bridge collapse frequencies versus failure probabilities. Springer, 2018. 126 p. https://doi.org/10.1007/978-3-319-73833-8">https://doi.org/10.1007/978-3-319-73833-8
Beben D. Soil-steel bridges: Design, maintenance and durability. Springer, 2020. 214 p. https://doi.org/10.1007/978-3-030-34788-8">https://doi.org/10.1007/978-3-030-34788-8
Ye S., Lai X., Bartoli I., Aktan A.E. Technology for condition and performance evaluation of highway bridges. Civil. Struct. Health Monit., 2020, vol. 10, pp. 573-594. https://doi.org/10.1007/s13349-020-00403-6">https://doi.org/10.1007/s13349-020-00403-6
Deng Y., Li A. Structural health monitoring for suspension bridges: Interpretation of field measurements. Springer, 2019. 243 p. https://doi.org/10.1007/978-981-13-3347-7">https://doi.org/10.1007/978-981-13-3347-7
Okamoto N., Kinoshita T., Futagi T. Development of new embedded expansion joint using high flexibility stone mastic asphalt. 8th RILEM International symposium on testing and characterization of sustainable and innovative bituminous materials, ed. F. Canestrari, M. Partl. Springer, 2016. Pp. 837-849. https://doi.org/10.1007/978-94-017-7342-3_67">https://doi.org/10.1007/978-94-017-7342-3_67
Eggert H., Kauschke W. Structural bearings. Ernst & Sohn, 2002. 405 р.
Kamenskih A.A., Trufanov N.A. Numerical analysis of the stress state of a spherical contact system with an interlayer of antifriction material. mekh. splosh. sred – Computational Continuum Mechanics, 2013, vol. 6, no. 1, pp. 54-61. https://doi.org/10.7242/1999-6691/2013.6.1.7">https://doi.org/10.7242/1999-6691/2013.6.1.7
Jiang L., He W., Wei B., Wang Z, Li S. The shear pin strength of friction pendulum bearings (FPB) in simply supported railway bridges. Earthquake Eng., 2019, vol. 17, pp. 6109-6139. https://doi.org/10.1007/s10518-019-00698-x">https://doi.org/10.1007/s10518-019-00698-x
Kuznetsov D.N., Grigorash V.V., Sventikov A.A. Work power of the support unit of the steel I-beam. Russian Journal of Building Construction and Architecture, 2021, no. 1(49), pp. 19-29. https://doi.org/10.36622/VSTU.2021.49.1.002">https://doi.org/10.36622/VSTU.2021.49.1.002
Lukin A.O., Suvorov A.A. Bridge spans with corrugated steel webs. Stroitel’stvo unikal’nykh zdaniy i sooruzheniy – Construction of unique buildings and structures, 2016, no. 2(41), pp. 45-67.
Pozynich K.P., Kligunov E.S. The unbalance problem of the superstructure lifting-transition bridge waterworks. Dal’niy Vostok: problemy razvitiya arkhitekturno-stroitel’nogo kompleksa, 2019, vol. 1, no. 1, pp. 326-330.
Devitofranceschi A., Paolieri E. Integral bridges: A construction method to minimize maintenance problems. Proceedings of Italian Concrete Days 2018, ed. M. di Prisco, M. Menegotto. Springer, 2020. Pp. 515-529. https://doi.org/10.1007/978-3-030-23748-6_40">https://doi.org/10.1007/978-3-030-23748-6_40
Huang W., Pei M., Liu X., Wei Y. Design and construction of super-long span bridges in China: Review and future perspectives. Struct. Civ. Eng., 2020, vol. 14, pp. 803-838. https://doi.org/10.1007/s11709-020-0644-1">https://doi.org/10.1007/s11709-020-0644-1
Su M., Wang J., Peng H., Cai C.S., Dai G.L. State-of-the-art review of the development and application of bridge rotation construction methods in China. China Technol. Sci., 2021, vol. 64, pp. 1137-1152. https://doi.org/10.1007/s11431-020-1704-1">https://doi.org/10.1007/s11431-020-1704-1
Kollegger J., Reichenbach S. Balanced lift method – building bridges without formwork. Proceedings of Italian Concrete Days 2016, ed. M. di Prisco, M. Menegotto. Springer, 2016. Pp. 200-215. https://doi.org/10.1007/978-3-319-78936-1_15">https://doi.org/10.1007/978-3-319-78936-1_15
Yu Xm., Chen Dw., Bai Zz. A new method for analysis of sliding cable structures in bridge engineering. KSCE J. Civ. Eng., 2018, vol. 22, pp. 4483-4489. https://doi.org/10.1007/s12205-017-0151-7">https://doi.org/10.1007/s12205-017-0151-7
Adamov A.A., Kamenskih A.A., Pankova A.P. Numerical analysis of the spherical bearing geometric configuration with antifriction layer made of different materials. Vestnik PNIPU. Mekhanika – PNRPU Mechanics Bulletin, 2020, no. 4, pp. 15-26. https://doi.org/10.15593/perm.mech/2020.4.02">https://doi.org/10.15593/perm.mech/2020.4.02
Adamov A.A., Kamenskikh A.A., Nosov Yu.O. Mathematical modeling of modern antifriction polymers behavior. Prikladnaya matematika i voprosy upravleniya – Applied Mathematics and Control Sciences, 2019, no. 4, pp. 43-56.
Ono K. Structural materials: Metallurgy of bridges. Metallurgical design and industry, ed. B. Kaufman, C. Briant. Springer, 2018. Pp. 193-269. https://doi.org/10.1007/978-3-319-93755-7_4">https://doi.org/10.1007/978-3-319-93755-7_4
Ipanov A.S., Adamov A.A., Patrakov I.M., Kopytov A.V., Kochnev N.V., Tsaplina V.I., RF Patent No. 180825, Byull. Izobret., 26 June 2018.
Kopytov A.V., Baltin D.R., Bukanova E.V., Lapin S.N., RF Patent No. 193680, Byull. , 11 November 2019.
Shaferman I.M., Gitman E.M., Shaferman A.I., Rogov A.B., Kopytov A.V., Bukanova E.V., RF Patent No. 194357, Byull. , 06 December 2019.
Shul’man S.A., Slutskaya M.N., RF Patent No. 167994, Byull. , 16 January 2017.
Bukanov V.V., Bukanova E.V., Patrakov I.M., RF Patent No. 181699, Byull. , 26 July 2018.
Khan A.K.M.T.A., Bhuiyan M.A.R., Ali S.B. Seismic responses of a bridge pier isolated by high damping rubber bearing: Effect of rheology modeling. J. Civ. Eng., 2019, vol. 17, pp. 1767-1783. https://doi.org/10.1007/s40999-019-00454-x">https://doi.org/10.1007/s40999-019-00454-x
Zhang Y., Li J., Wang L., Wu H. Study on the seismic performance of different combinations of rubber bearings for continuous beam bridges. Civ. Eng., 2020, vol. 2020, 8810874. https://doi.org/10.1155/2020/8810874">https://doi.org/10.1155/2020/8810874
Mahboubi S., Shiravand M.R. Seismic evaluation of bridge bearings based on damage index. Earthquake Eng., 2019, vol. 17, pp. 4269-4297. https://doi.org/10.1007/s10518-019-00614-3">https://doi.org/10.1007/s10518-019-00614-3
Zhang Y., Li J. Effect of material characteristics of high damping rubber bearings on aseismic behaviors of a two-span simply supported beam bridge. Advances in Materials Science and Engineering, 2020, vol. 2020, 9231382. https://doi.org/10.1155/2020/9231382">https://doi.org/10.1155/2020/9231382
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.