Influence of a variable thermal diffusion coefficient on convection of a binary mixture in rectangular cavities
DOI:
https://doi.org/10.7242/1999-6691/2021.14.2.20Keywords:
convection, binary mixture, diffusion, thermal diffusion, thermal diffusion coefficientAbstract
This paper presents the results of numerical simulation of nonlinear convection regimes of a NaCl aqueous solution in square and horizontally elongated rectangular cavities with hard and impermeable boundaries. The vertical boundaries of the cavities are thermally insulated, and the horizontal ones are maintained at different constant temperatures, which corresponds to heating from below. Calculations are carried out within the non-stationary approach using of Boussinesq approximation and taking into account the polynomial temperature dependence of the thermal diffusion coefficient. According to this approximation, at T*≈285.4 K, the thermal diffusion coefficient changes sign, and thus the direction of the concentration gradient also changes. The temperature gradients on the horizontal boundaries are chosen so that the thermal diffusion coefficient changes sign inside the cavity. Other transport coefficients are considered to be constant. Simulations were performed under Earth-gravity and reduced-gravity conditions. Based on the results of simulations, the local and integral characteristics of non-linear regimes were obtained, and the structure of the emerging flow and the distribution of NaCl concentration were determined. It is shown that the temperature dependence of the thermal diffusion coefficient only slightly affect the structure and intensity of the emerging flow but significantly reduces the degree of separation of mixture components. Under the influence of the Earth’s gravitational field, an oscillatory four-vortex flow with reconnection of vortices occurs in the square cavity, and a multi-vortex flow - in the rectangular cavity. The characteristics of the multi-vortex flow vary irregularly. At reduced gravity, a stationary flow is observed in both square and rectangular cavities. Under microgravity conditions, the concentration isolines are “frozen” into the stream function field, i.e., the similarity between the fields is pronounced.
Downloads
References
Galliero G., Bataller H., Croccolo F., Vermorel R., Artola P.-A., Rousseau B., Vesovic V., Bou-Ali M., Ortiz de Zárate J.M., Xu S., Zhang K., Montel F. Impact of thermodiffusion on the initial vertical distribution of species in hydrocarbon reservoirs. Microgravity Sci. Technol., 2016, vol. 28, pp. 79-86. https://doi.org/10.1007/s12217-015-9465-6">https://doi.org/10.1007/s12217-015-9465-6
Maryshev B.S., Lyubimova T.P., Lyubimov D.V. Stability of homogeneous seepage of a liquid mixture through a closed region of the saturated porous medium in the presence of the solute immobilization. Int. J. Heat Mass Tran., 2016, vol. 102, pp. 113-121. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.016">https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.016
Soboleva E.B. Density-driven convection in an inhomogeneous geothermal reservoir. Int. J. Heat Mass Tran., 2018, vol. 127, pp. 784-798. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.019">https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.019
Klimenko L.S., Maryshev B.S. Microchannel cleaning by the external laminar flow. Vestnik Permskogo universiteta. Fizika – Bulletin of Perm University. Physics, 2020, no. 3, pp. 5-13. https://doi.org/10.17072/1994-3598-2020-3-05-13">https://doi.org/10.17072/1994-3598-2020-3-05-13
Lyubimova T.P., Lepikhin A.P., Parshakova Ya.N., Tsiberkin K.B. Numerical modeling of liquid-waste infiltration from storage facilities into surrounding groundwater and surface-water bodies. J. Appl. Mech. Tech. Phy., 2016, vol. 57, pp. 1208-1216. https://doi.org/10.1134/S0021894416070099">https://doi.org/10.1134/S0021894416070099
Sasmito A.P., Birgersson E., Ly H.C., Mujumdar A.S. Some approaches to improve ventilation system in underground coal mines environment – A computational fluid dynamic study. Tunnelling and Underground Space Technology, 2013, vol. 34, pp. 82-95. https://doi.org/10.1016/j.tust.2012.09.006">https://doi.org/10.1016/j.tust.2012.09.006
Lyubimova T.P., Lepikhin A.P., Parshakova Ya.N. Numerical simulation of wastewater discharge into water objects to improve discharge devices. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2019, vol. 12, no. 4, pp. 427-434. https://doi.org/10.7242/1999-6691/2019.12.4.36">https://doi.org/10.7242/1999-6691/2019.12.4.36
Lepikhin A.P., Voznyak A.A., Lyubimova T.P., Parshakova Ya.N, Lyakhin Yu.S., Bogomolov A.V. Studying the formation features and the extent of diffuse pollution formed by large industrial complexes: case study of the Solikamsk–Berezniki industrial hub. Water Resour., 2020, vol. 47, pp. 744-750. https://doi.org/10.1134/S0097807820050127">https://doi.org/10.1134/S0097807820050127
Barvier E. Geothermal energy technology and current status: an overview. Renew. Sustain. Energ. Rev., 2002, vol. 6, pp. 3-65. https://doi.org/10.1016/S1364-0321(02)00002-3">https://doi.org/10.1016/S1364-0321(02)00002-3
Kishikawa Y., Shinohara H., Maeda K., Nakamura Y., Wiegand S., Kita R. Temperature dependence of thermal diffusion for aqueous solutions of monosaccharides, oligosaccharides, and polysaccharides. Phys. Chem. Chem. Phys., 2012, vol. 14, pp. 10147-10153. https://doi.org/10.1039/c2cp41183k">https://doi.org/10.1039/c2cp41183k
D’Errico G., Ortona O., Paduano L., Sartorio R. Diffusion properties of the ternary system human serum albumin–sodium cholate–water. J. Solution Chem., 2014, vol. 43, pp. 893-915. https://doi.org/10.1007/s10953-014-0179-y">https://doi.org/10.1007/s10953-014-0179-y
Shliomis M.I., Souhar M. Self-oscillatory convection caused by the Soret effect. EPL, 2000, vol. 49, pp. 55-61. http://dx.doi.org/10.1209/epl/i2000-00119-4">http://dx.doi.org/10.1209/epl/i2000-00119-4
Cherepanov I.N., Smorodin B.L. Oscillatory convection of a colloidal suspension in a horizontal cell. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2020, vol. 13, no. 3, pp. 247-255. https://doi.org/10.7242/1999-6691/2020.13.3.19">https://doi.org/10.7242/1999-6691/2020.13.3.19
Demin V.A., Mizev A.I., Petukhov M.I., Shmyrov A.V. Separation of low-melting metal melts in a thin inclined capillary. Fluid Dyn., 2019, vol. 54, pp. 1-13. https://doi.org/10.1134/S001546281901004X">https://doi.org/10.1134/S001546281901004X
Kolodner P., William H., Moe C. Optical measurement of the Soret coefficient of ethanol/water solutions. J. Chem. Phys., 1988, vol. 88, pp. 6512-6524. https://doi.org/10.1063/1.454436">https://doi.org/10.1063/1.454436
Leahy-Dios A., Firoozabadi A. Molecular and thermal diffusion coefficients of alkane-alkane and alkane-aromatic binary mixtures: Effect of shape and size of molecules. J. Phys. Chem. B, 2007, vol. 111, pp. 191-198. https://doi.org/10.1021/jp064719q">https://doi.org/10.1021/jp064719q
Mialdun A., Shevtsova V.M. Development of optical digital interferometry technique for measurement of thermodiffusion coefficients. Int. J. Heat Mass Tran., 2008, vol. 51, pp. 3164-3178. https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.020">https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.020
Königer A., Meier B., Köhler W. Measurement of the Soret, diffusion, and thermal diffusion coefficients of three binary organic benchmark mixtures and of ethanol/water mixtures using a beam deflection technique. Phil. Mag., 2009, vol. 89, pp. 907-923. https://doi.org/10.1080/14786430902814029">https://doi.org/10.1080/14786430902814029
Blanco P., Bou-Ali M.M., Platten J.K., de Mezquia D.A., Madariaga J.A., Santamaría C. Thermodiffusion coefficients of binary and ternary hydrocarbon mixtures. J. Chem. Phys., 2010, vol. 132, 114506. https://doi.org/10.1063/1.3354114">https://doi.org/10.1063/1.3354114
Vitagliano V., Lyons P.A. Diffusion coefficients for aqueous solutions of sodium chloride and barium chloride. J. Am. Chem. Soc., 1956, vol. 78, pp. 1549-1552. https://doi.org/10.1021/ja01589a011">https://doi.org/10.1021/ja01589a011
Caldwell D.R. Measurement of negative thermal diffusion coefficients by observing the onset of thermohaline convection. J. Phys. Chem., 1973, vol. 77, pp. 2004-2008. https://doi.org/10.1021/j100635a018">https://doi.org/10.1021/j100635a018
Caldwell D.R., Eide S.A. Soret coefficient and isothermal diffusivity of aqueous solutions of five principal salt constituents of seawater. Deep Sea Res. Oceanogr. Res. Paper., 1981, vol. 28, pp. 1605-1618. https://doi.org/10.1016/0198-0149(81)90100-X">https://doi.org/10.1016/0198-0149(81)90100-X
Chang Y.C., Myerson A.S. The diffusivity of potassium chloride and sodium chloride in concentrated, saturated, and supersaturated aqueous solutions. AlChE J., 1985, vol. 31, pp. 890-894. https://doi.org/10.1002/aic.690310603">https://doi.org/10.1002/aic.690310603
Mialdun A., Shevtsova V. Temperature dependence of Soret and diffusion coefficients for toluene–cyclohexane mixture measured in convection-free environment. J. Chem. Phys., 2015, vol. 143, 224902. https://doi.org/10.1063/1.4936778">https://doi.org/10.1063/1.4936778
Johnson J.-C.C., Beyerlein A.L. Thermal diffusion in mixtures with associated reactions. Thermal diffusion factors for methanol-benzene mixtures. J. Phys. Chem., 1978, vol. 82, pp. 1430-1436. https://doi.org/10.1021/j100501a021">https://doi.org/10.1021/j100501a021
Wittko G., Kohler W. On the temperature dependence of thermal diffusion of liquid mixtures. EPL, 2007, vol. 78, 46007. https://doi.org/10.1209/0295-5075/78/46007">https://doi.org/10.1209/0295-5075/78/46007
Zhang K.J., Briggs M.E., Gammon R.W., Sengers J.V. Optical measurement of the Soret coefficient and the diffusion coefficient of liquid mixtures. J. Chem. Phys., 1996, vol. 104, pp. 6881-6892. https://doi.org/10.1063/1.471355">https://doi.org/10.1063/1.471355
Ghorayeb K., Firoozabadi A. Modeling multicomponent diffusion and convection in porous media. SPE J., 2000, vol. 5, pp. 158-171. https://doi.org/10.2118/62168-PA">https://doi.org/10.2118/62168-PA
Shevtsova V.M., Melnikov D.E., Legros J.C. Onset of convection in Soret-driven instability. Phys. Rev. E, 2006, vol. 73, 047302. https://doi.org/10.1103/PhysRevE.73.047302">https://doi.org/10.1103/PhysRevE.73.047302
Lyubimova T., Zubova N., Shevtsova V. Effects of non-uniform temperature of the walls on the Soret experiment. Microgravity Sci. Technol., 2019, vol. 31, pp. 1-11. https://doi.org/10.1007/s12217-018-9666-x">https://doi.org/10.1007/s12217-018-9666-x
Ryzhkov I.I., Stepanova I.V. On thermal diffusion separation in binary mixtures with variable transport coefficients. Int. J. Heat Mass Tran., 2015, vol. 86, pp. 268-276. https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.069">https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.069
Weast R.C. (Ed.) Handbook of chemistry and physics. CRC Press, 1977.
Cooper C.A., Glass R.J., Tyler S.W. Effect of buoyancy ratio on the development of double-diffusive finger convection in a Hele-Shaw cell. Water Resour. Res., 2001, vol. 37, pp. 2323-2332. https://doi.org/10.1029/2001WR000343">https://doi.org/10.1029/2001WR000343
Gershuni G.Z., Zhukhovitskii E.M. Convective stability of incompressible fluids. Keter Publishing House, 1976. 330 pp.
Lyubimova T., Rushinskaya K., Zubova N. Onset and nonlinear regimes of convection of a binary mixture in rectangular cavity heated from below. Microgravity Sci. Technol., 2020, vol. 32, pp. 961-972. https://doi.org/10.1007/s12217-020-09823-x">https://doi.org/10.1007/s12217-020-09823-x
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Computational Continuum Mechanics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.