Study of the strength of monolithic concrete lining of mine shaft under variable heat loads

Authors

  • Sergey Anatol’yevich Bublik Mining Institute UB RAS
  • Mikhail Aleksandrovich Semin Mining Institute UB RAS
  • Lev Yur’yevich Levin Mining Institute UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2021.14.2.19

Keywords:

mine shaft, concrete lining, temperature deformations, theory of elasticity, strength, numerical simulation

Abstract

Monolithic concrete lining is the most popular shaft lining because it is able to endure the rock pressure effects and to exclude large deformations of shaft walls. In the case of starting the reverse ventilation mode in the winter season, a significant negative temperature difference may occur between the warm shaft walls and the cold air from the surface. That temperature difference may have adverse impacts on concrete lining, causing high tensile stresses in it. In this paper, the stress-strain state of the concrete lining and rock mass surrounding the mine shaft is investigated to evaluate the strength of the lining during the reverse ventilation mode in the winter season. The object of the study is the ventilation shaft with surrounding concrete lining and rock mass. Solid and concrete are considered to be isotropic and homogeneous, and their thermodynamic properties are independent of temperature. This allows considering a two-dimensional problem. It is assumed that the temperature drop in lining and rock mass is the only significant factor affecting the stress-strain state of the system. When calculating the temperature of the lining and rock mass, the conductive heat transfer in the volume of rocks and lining, the heat exchange of the lining and rocks with atmospheric air and the heat exchange of the lining with the mine air are taken into account. The presence of moisture in rock mass is not considered. Based on the results of numerical simulation, the following was established. The concrete lining mostly undergoes tensile stresses; the maximum tensile stress acts in a vertical direction. The width of the pre-fracture zone of the lining nonlinearly depends on the duration of the reverse ventilation mode. With an increase in the air temperature in the shaft, the width of the pre-failure zone of the lining decreases, and the permissible duration of the reverse mode significantly increases.

Downloads

Download data is not yet available.

References

Kazakevich E.V. Krepleniye vertikal’nykh stvolov shakht monolitnym betonom [Fastening of vertical shaft shafts with monolithic concrete]. Moscow, Nedra, 1970. 184 p.

Bulychev N.S., Fotiyeva N.N., Strel'cov E.V. Proyektirovaniye i raschet krepi kapital’nykh vyrabotok [Design and calculation of support for capital workings]. Moscow, Nedra, 1986. 288 p.

Zaslavskiy Yu.Z., Mostkov V.M. Krepleniye podzemnykh sooruzheniy [Fastening of underground structures]. Moscow, Nedra, 1979. 325 p

Semin M.A., Levin L.Yu. Theoretical research of heat exchange between air flow and shaft lining subject to convective heat transfer. GIAB – Mining Informational and Analytical Bulletin, 2020, no. 6, p. 151-167. https://doi.org/10.25018/0236-1493-2020-6-0-151-167">https://doi.org/10.25018/0236-1493-2020-6-0-151-167

Kazakov B.P., Levin L. Yu., Shalimov A.V., Zaitsev A. V. Razrabotka energosberegayushchikh tekhnologiy obespecheniya komfortnykh mikroklimaticheskikh usloviy pri vedenii gornykh rabot [Development of energy-saving technologies providing comfortable microclimate conditions for mining]. Zapiski Gornogo Instituta – Journal of Mining Institute, 2017, vol. 223, pp. 116-124. https://doi.org/10.18454/PMI.2017.1.116">https://doi.org/10.18454/PMI.2017.1.116

Pashkovskiy P.S., Karnaukh N.V., Mavrodi A.V. Health care and safety measures for surface mine locations in underground fire emergency conditions. Vestnik IZGD – Donbass International Journal of Emergency and Applied Knowledge Management, 2015, no. 3(3), pp. 8-14.

Gendler S.G., Rudakov M.L., Samarov L.Yu. Opyt i perspektivy upravleniya okhranoy truda i promyshlennoy bezopasnost’yu na predpriyatiyakh mineral’no-syr’yevogo kompleksa [Experience and prospects of occupational and industrial safety control in mineral mining and processing]. Gornyi Zhurnal, 2015, no. 5, pp. 84-87. https://doi.org/10.17580/gzh.2015.05.17">https://doi.org/10.17580/gzh.2015.05.17

Gazizullin R.R., Levin L.Yu., Klyukin Yu.A. Air handling system for mine shaft heating in normal and reverse ventilation modes. GIAB – Mining Informational and Analytical Bulletin, 2015, no. S7, pp. 19-25.

Kazakov B.P., Shalimov A.V., Semin M.A., Klyukin Yu.A. Matematicheskoye modelirovaniye termodinamicheskikh protsessov v sistemakh vozdukhopodgotovki kaliynykh rudnikov [Mathematical modeling of thermodynamic processes in air conditioning systems in potash mines]. Gornyi Zhurnal, 2019, no. 8, pp. 81-84. https://doi.org/10.17580/gzh.2019.08.16">https://doi.org/10.17580/gzh.2019.08.16

Prokopov A.Yu. Causes and consequences of origin of heat influence on support and hard armor in air shafts in Donbass. Izvestiya. vuzov. Severo-Kavkazskiy region. Tekhnicheskiye nauki – University News. North-Caucasian Region. Technical Sciences Series, 2007, no. 3, pp. 89-92.

Iudin M.M. Treshchinoobrazovaniye v betonnoy krepi vertikal’nykh stvolov rudnikov Severa [Cracking in the concrete lining of the vertical shafts of the mines in the North]. GIAB – Mining Informational and Analytical Bulletin, 2007, no. S6, pp. 301-308.

Jie Z., Guo-qing Z., Xiang-yu S., Ting L. Numerical simulation on shaft lining stresses analysis of operating mine with seasonal temperature change. Procedia Earth and Planetary Science, 2009, vol. 1, pp. 550-555. https://doi.org/10.1016/j.proeps.2009.09.087">https://doi.org/10.1016/j.proeps.2009.09.087

Trapeznikov L.P. Temperaturnaya treshchinostoykost’ massivnykh betonnykh sooruzheniy [Temperature crack resistance of massive concrete structures]. Moscow, Energoatomizdat, 1986. 272 p.

Rukovodstvo po proyektirovaniyu podzemnykh gornykh vyrabotok i raschetu krepi [Guidelines for the design of underground mine workings and calculation of the support]. Moscow, Stroyizdat, 1983. 272 p.

https://aeroset.net">https://aeroset.net (accessed 14 April 2021).

Provedeniye kompleksa naturnykh issledovaniy i razrabotka informatsionno-analiticheskoy sistemy nepreryvnogo kontrolya temperaturnogo i napryazhenno-deformirovannogo sostoyaniya prikonturnoy chasti massiva, krepi i armirovki stvola VS-7 rudnika «Taymyrskiy»: otchet o NIR [Carrying out a complex of field studies and development of an information and analytical system for continuous monitoring of the temperature and stress-strain state of the near-contour part of the massif, support and reinforcement of the VS-7 shaft of the Taimyrsky mine: research report]. Perm’: GI UrO RAN, 2020. 60 p.

Timoshenko S.P., Goodier J.N. Theory of elasticity. MacGraw Hill Book Company, 1951. 506 р.

Solyanik-Krassa K.V. Osesimmetrichnaya zadacha teorii uprugosti [Axisymmetric problem of the theory of elasticity]. Moscow, Stroyizdat, 1987. 336 p.

Skripnyak V.A., Skripnyak E.G. Metody resheniya ploskikh zadach lineynoy teorii uprugosti [Methods for solving plane problems of the linear theory of elasticity]. Tomsk, TGU, 1998. 32 p.

Published

2021-06-30

Issue

Section

Articles

How to Cite

Bublik, S. A., Semin, M. A., & Levin, L. Y. (2021). Study of the strength of monolithic concrete lining of mine shaft under variable heat loads. Computational Continuum Mechanics, 14(2), 220-232. https://doi.org/10.7242/1999-6691/2021.14.2.19