Features of the flow of concentrated suspensions of solid particles

Authors

  • Oleg Ivanovich Skul’skiy Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2021.14.2.18

Keywords:

highly concentrated suspensions, rheological model, non-Newtonian dispersion medium, diffusion-convective transfer, numerical solution, plane and axisymmetric flows

Abstract

Concentrated suspensions of solids, widely used in the pharmaceutical, cosmetic and food industries, exhibit complex rheology. In the rheometric one-dimensional flows of concentrated suspensions, a smooth or abrupt increase in stresses with a smooth increase in the strain rate intensity can be observed. This is related to the appearance of a first-order phase transition. In our previous work, a phenomenological rheological model of a concentrated suspension of solid particles in a Newtonian dispersion liquid has been developed. This model is characterized by an S-shaped flow curve and describes both continuous and abrupt increases in the stress intensity with a uniform increase in the strain rate intensity. In this work, exact analytical formulas are obtained for the flow velocity profiles of suspensions measured using rotary viscometers. The model proposed before is modified to take into account the non-Newtonian properties of the dispersion medium, which demonstrates pseudoplastic properties at low stress intensities and dilatant properties at high stress intensities. Based on the developed numerical model, the features of the flow of highly concentrated suspensions in plane and axisymmetric channels are analyzed. It is shown that in a flat diffuser, in contrast to Newtonian and pseudoplastic fluids, the longitudinal velocity of the suspension slows down near the walls, where the stresses are maximum, and accelerates in the central part of the channel. Calculations for the submerged jet in the area bounded by the walls show that, with an increase in the average velocity of the incoming pure liquid by more than 0.01 m/s, there occurs a local velocity vortex bounded by a layer with high particle concentration and more viscous medium; particle concentration inside the vortex is minimum.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-45-596020.

References

Verdier C. Rheological properties of living materials. From cells to tissues. J. Theor. Med., 2003, vol. 5, pp. 67-91. https://doi.org/10.1080/10273360410001678083">https://doi.org/10.1080/10273360410001678083

Khodakov G.S. Reologiya suspenziy. Teoriya fazovogo techeniya i eye eksperimental’noye obosnovaniye [Suspension rheology. The theory of phase flow and its experimental substantiation]. Ros. khim. zh. (Zh. Ros. khim. ob-va im. D.I. Mendeleyeva), 2003, vol. XLVII, no. 2, pp. 33-43.

Guillou S., Makhloufi R. Effect of a shear-thickening rheological behaviour on the friction coefficient in a plane channel flow: A study by direct numerical simulation. Journal of Non-Newtonian Fluid Mechanics, 2007, vol. 144, pp. 73-86. https://doi.org/10.1016/j.jnnfm.2007.03.008">https://doi.org/10.1016/j.jnnfm.2007.03.008

Galindo-Rosales F.J., Rubio-Hernandez F.J., Velazquez-Navarro J.F. Shear-thickening behavior of Aerosil® R816 nanoparticles suspensions in polar organic liquids.Rheol. Acta, 2009, vol. 48, pp. 699-708. https://doi.org/10.1007/s00397-009-0367-7">https://doi.org/10.1007/s00397-009-0367-7

Liu A.J., Nagel S.R. The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys., 2010, vol. 1, pp. 347-369. https://doi.org/10.1146/annurev-conmatphys-070909-104045">https://doi.org/10.1146/annurev-conmatphys-070909-104045

Seth J.R., Mohan L., Locatelli-Champagne C., Cloitre M., Bonnecaze R.T. A micromechanical model to predict the flow of soft particle glasses. Nature Mater., 2011, vol. 10, pp. 838-843. https://doi.org/10.1038/nmat3119">https://doi.org/10.1038/nmat3119

Galindo-Rosalesa F.J., Rubio-Hernбndez F.J., Sevilla A. An apparent viscosity function for shear thickening fluids. Journal of Non-Newtonian Fluid Mechanics, 2011, vol. 166, pp. 321-325. https://doi.org/10.1016/j.jnnfm.2011.01.001">https://doi.org/10.1016/j.jnnfm.2011.01.001

Boyer F., Guazzell E., Pouliquen O. Unifying suspension and granular rheology. Phys. Rev. Lett., 2011, vol. 107, 188301. https://doi.org/10.1103/PhysRevLett.107.188301">https://doi.org/10.1103/PhysRevLett.107.188301

Nakanishi H., Nagahiro S., Mitarai N. Fluid dynamics of dilatant fluids. Phys. Rev. E, 2012, vol. 85, 011401. https://doi.org/10.1103/PhysRevE.85.011401">https://doi.org/10.1103/PhysRevE.85.011401

Fortier A. Mécanique de suspensions [Suspension mechanics]. Masson et C-ie, 1967. 176 p.

Ur’yev N.B. Fiziko-khimicheskiye osnovy tekhnologii dispersnykh sistem i materialov [Physicochemical foundations of the technology of dispersed systems and materials]. Moscow, Khimiya, 1988. 255 p.

Tanner R.I. Engineering rheology. Oxford University Press, 2000. 586 p.

Brown E., Jaeger H.M. Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming. Rep. Prog. Phys., 2014, vol. 77, 046602. http://iopscience.iop.org/0034-4885/77/4/046602">http://iopscience.iop.org/0034-4885/77/4/046602

Denn M.M., Morris J.F. Rheology of non-Brownian suspensions. Annu. Rev. Chem. Biomol. Eng., 2014, vol. 5, pp. 203-228. https://doi.org/10.1146/annurev-chembioeng-060713-040221">https://doi.org/10.1146/annurev-chembioeng-060713-040221

Ardakani H.A., Mitsoulis E., Hatzikiriakos S.G. Capillary flow of milk chocolate. Journal of Non-Newtonian Fluid Mechanics, 2014, vol. 210, pp. 56-65. https://doi.org/10.1016/j.jnnfm.2014.06.001">https://doi.org/10.1016/j.jnnfm.2014.06.001

Mari R., Seto R., Morris J.F., Denn M.M. Nonmonotonic flow curves of shear thickening suspensions. Phys. Rev. E, 2015, vol. 91, 052302. https://doi.org/10.1103/PhysRevE.91.052302">https://doi.org/10.1103/PhysRevE.91.052302

Pan Zh., de Cagny H., Weber B., Bonn D. S-shaped flow curves of shear thickening suspensions: Direct observation of frictional rheology. Phys. Rev. E, 2015, vol. 92, 032202. https://doi.org/10.1103/PhysRevE.92.032202">https://doi.org/10.1103/PhysRevE.92.032202

Ness C., Sun J. Shear thickening regimes of dense non-Brownian suspensions. Soft Matter, 2016, vol. 12, pp. 914-924. https://doi.org/10.1039/c5sm02326b">https://doi.org/10.1039/c5sm02326b

Vázquez-Quesada A., Ellero M. Rheology and microstructure of non-colloidal suspensions under shear studied with Smoothed Particle Hydrodynamics. Journal of Non-Newtonian Fluid Mechanics, 2016, vol. 233, pp. 37-47. https://doi.org/10.1016/j.jnnfm.2015.12.009">https://doi.org/10.1016/j.jnnfm.2015.12.009

Nagahiro S., Nakanishi H. Negative pressure in shear thickening bands of a dilatant fluid. Phys. Rev. E, 2016, vol. 94, 062614. https://doi.org/10.1103/PhysRevE.94.062614">https://doi.org/10.1103/PhysRevE.94.062614

Vázquez-Quesada A., Wagner N.J., Ellero M. Planar channel flow of a discontinuous shear-thickening model fluid: Theory and simulation. Phys. Fluid., 2017, vol. 29, 103104. https://doi.org/10.1063/1.4997053">https://doi.org/10.1063/1.4997053

Singh A., Mari R., Denn M.M., Morris J.F. A constitutive model for simple shear of dense frictional suspensions. J. Rheol., 2018, vol. 62, pp. 457-468. https://doi.org/10.1122/1.4999237">https://doi.org/10.1122/1.4999237

Singh A., Pednekar S., Chun J., Denn M.M., Morris J.F. From yielding to shear jamming in a cohesive frictional suspension. Phys. Rev. Lett., 2019, vol. 122, 098004. https://doi.org/10.1103/PhysRevLett.122.098004">https://doi.org/10.1103/PhysRevLett.122.098004

Egres R.G., Wagner N.J. The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J. Rheol., 2005, vol. 49, pp. 719-746. https://doi.org/10.1122/1.1895800">https://doi.org/10.1122/1.1895800

Skulskiy O.I., Slavnov Ye.V., Shakirov N.V. The hysteresis phenomenon in nonisothermal channel flow of a non-Newtonian liquid. Journal of Non-Newtonian Fluid Mechanics, 1999, vol. 81, pp. 17-26. https://doi.org/10.1016/S0377-0257(98)00091-3">https://doi.org/10.1016/S0377-0257(98)00091-3

Aristov S.N., Skul'skii O.I. Exact solution of the problem on a six‐constant Jeffreys model of fluid in a plane channel. J. Appl. Mech. Tech. Phys., 2002, vol. 43, pp. 817-822. https://doi.org/10.1023/A:1020752101539">https://doi.org/10.1023/A:1020752101539

Aristov S.N., Skul'skii O.I. Exact solution of the problem of flow of a polymer solution in a plane channel. J. Eng. Phys. Thermophys., 2003, vol. 76, pp. 577-585. https://doi.org/10.1023/A:1024768930375">https://doi.org/10.1023/A:1024768930375

Kuznetsova Yu.L., Skul’skii O.I., Sitnikova M.A. Lubricant flow in pressure pipes during wire drawing in a hydrodynamic friction mode. J. Frict. Wear, 2007, vol. 28, pp. 359-363. https://doi.org/10.3103/S106836660704006X">https://doi.org/10.3103/S106836660704006X

Skul’skiy O.I. Rheometric flows of concentrated suspensions of solid particles. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2020, vol. 13, no. 3, pp. 269-278. https://doi.org/10.7242/1999-6691/2020.13.3.21">https://doi.org/10.7242/1999-6691/2020.13.3.21

Fuks N.A. Mekhanika aerozoley [Aerosol mechanics]. Moscow, Izd-vo AN SSSR, 1955, 352 p.

Gray J.M.N.T. Particle segregation in dense granular flows. Annu. Rev. Fluid Mech., 2018, vol. 50, pp. 407-433. https://doi.org/10.1146/annurev-fluid-122316-045201">https://doi.org/10.1146/annurev-fluid-122316-045201

Sanli C., Lohse D., van der Meer D. From antinode clusters to node clusters: The concentration-dependent transition of floaters on a standing Faraday wave. Phys. Rev. E, 2014, vol. 89, 053011. https://doi.org/10.1103/PhysRevE.89.053011">https://doi.org/10.1103/PhysRevE.89.053011

Sánchez-Rosas M., Casillas-Navarrete J., Jiménez-Bernal J.A., Kurdyumov V.N., Medina A. Experimental and numerical study of submerged jets from pipes of different wall thicknesses for Re<1. Revista Mexicana de Fisica, 2020, vol. 66, pp. 69-76.

Yavorskiy N.I. Teoriya zatoplennykh struy i sledov [The theory of submerged jets and trails]. Novosibirsk, In-t teplofiziki SO RAN, 1998. 242 p.

Skul’skiy O.I., Fonarev A.V., Kuznetsova Yu.L. «FEM FLOW» – finite element program for calculating the flow of a viscoelastic fluid in channels with a free surface, taking into account non-isothermal. RF Copyright Certificate No. 2007611760, 25 April 2007.

Published

2021-06-30

Issue

Section

Articles

How to Cite

Skul’skiy, O. I. (2021). Features of the flow of concentrated suspensions of solid particles. Computational Continuum Mechanics, 14(2), 210-219. https://doi.org/10.7242/1999-6691/2021.14.2.18