Numerical analysis of the effective properties of inhomogeneously polarized porous piezoelectric ceramics with ni-doped pore walls taking into account the influence of volume fractions of metal and pores

Authors

  • Andrey Viktorovich Nasedkin Rostov-on-Don university
  • Mohammed Alsayed Nassar Rostov-on-Don university; University in Egypt

DOI:

https://doi.org/10.7242/1999-6691/2021.14.2.16

Keywords:

piezoelectric composites, porous piezoceramics, piezoelectric ceramic-metal composite, homogenization problem, effective properties, finite element method, piezoelectric transducers, nonuniform polarization

Abstract

The paper considers a porous piezoelectric composite with metal layers deposited on the interface between the piezoelectric and vacuum phases. Such metal layers can be added technologically to improve the mechanical and electromechanical properties of the composite. To find the effective moduli, we designed a simple representative cubic volume of a unit cell consisting of a piezoelectric matrix with a compound spherical pore in its center. In turn, the compound pore includes the pore itself and a hollow metal sphere on its surface. The composite's three phases were all modeled as piezoelectric materials. The conducting interface layer was modeled as a piezoelectric material with very high dielectric constants, small piezoelectric moduli, and elastic properties of the employed metal, while the vacuum pore was modeled as a piezoelectric material with marginal moduli. The mathematical formulation of boundary value homogenization problems with full contact conditions on the interface boundaries, based on the Hill energy criterion, was described. By solving nine boundary value problems of electroelasticity with different boundary conditions for displacements and electric potential by the finite element method, a complete set of effective moduli of the piezoelectric composite is determined. The importance of considering the inhomogeneous polarization due to the presence of pores and metallic inclusions was discussed. An approximate method was proposed for determining the inhomogeneous polarization field in a piezoceramic matrix, based on a preliminary solution of the electrostatic problem for dielectrics and locating the element coordinate systems rotated along the polarization vector. The paper describes the results of computational experiments for a piezocomposite consisting of PZT-5H piezoceramic matrix, pores, and nickel layers on the pore surfaces. Comparisons between the effective properties of this composite with different volume fractions of metal and the conventional porous piezocomposite were provided, depending on the porosity and taking into account the inhomogeneous polarization. Significant differences were observed for some piezomoduli and dielectric constants, which are promising for various practical applications of the considered composites in piezoactuators using the phenomenon of the transverse piezoelectric effect.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-31-90102.

References

Vijaya M.S. Piezoelectric materials and devices: Applications in engineering and medical sciences. CRC press, 2012. 186 p. https://doi.org/10.1201/b12709">https://doi.org/10.1201/b12709

Elahi H., Munir K., Eugeni M., Abrar M., Khan A., Arshad A., Gaudenzi P. A review on applications of piezoelectric materials in aerospace industry. Integrated Ferroelectrics, 2020, vol. 211, pp. 25-44. https://doi.org/10.1080/10584587.2020.1803672">https://doi.org/10.1080/10584587.2020.1803672

Gripp J.A.B., Rade D.A. Vibration and noise control using shunted piezoelectric transducers: A review. Mech. Syst. Signal Process., 2018, vol. 112, pp. 359-383. https://doi.org/10.1016/j.ymssp.2018.04.041">https://doi.org/10.1016/j.ymssp.2018.04.041

Wang L.-P., Wolf R.A., Wang Y., Deng K.K., Zou L., Davis R.J., Trolier-McKinstry S. Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers. J. Microelectromech. Syst., 2003, vol. 12, pp. 433-439. https://doi.org/10.1109/JMEMS.2003.811749">https://doi.org/10.1109/JMEMS.2003.811749

Brownjohn J.M.W. Structural health monitoring of civil infrastructure. Phil. Trans. R. Soc. A, 2007, vol. 365, pp. 589-622. https://doi.org/10.1098/rsta.2006.1925">https://doi.org/10.1098/rsta.2006.1925

Smith W.A. The role of piezocomposites in ultrasonic transducers. Proc. IEEE Ultrasonics Symp., 1989, vol. 2, pp. 755-766. https://doi.org/10.1109/ULTSYM.1989.67088">https://doi.org/10.1109/ULTSYM.1989.67088

Della C.N., Shu D. The performance of 1–3 piezoelectric composites with a porous non-piezoelectric matrix. Acta Mater., 2008, vol. 56, pp. 754-761. https://doi.org/10.1016/j.actamat.2007.10.022">https://doi.org/10.1016/j.actamat.2007.10.022

Iyer S., Venkatesh T.A. Electromechanical response of porous piezoelectric materials: Effects of porosity connectivity. Appl. Phys. Lett., 2010, vol. 97, 072904. https://doi.org/10.1063/1.3481416">https://doi.org/10.1063/1.3481416

Iyer S., Venkatesh T.A. Electromechanical response of (3-0) porous piezoelectric materials: Effects of porosity shape. J. Appl. Phys., 2011, vol. 110, 034109. https://doi.org/10.1063/1.3622509">https://doi.org/10.1063/1.3622509

Yoon S.-J., Moon J.H., Kim H.-J. Piezoelectric and mechanical properties of Pb(Zr0.52Ti0.48)O3–Pb(Y2/3W1/3)O3(PZT–PYW) ceramics. J. Mater. Sci., 1997, vol. 32, pp. 779-782. https://doi.org/10.1023/A:1018516608868">https://doi.org/10.1023/A:1018516608868

Mehta K., Virkar A.V. Fracture mechanisms in ferroelectric‐ferroelastic lead zirconate titanate (Zr: Ti=0.54:0.46) ceramics. J. Am. Ceram. Soc., 1990, vol. 73, pp. 567-574. https://doi.org/10.1111/j.1151-2916.1990.tb06554.x">https://doi.org/10.1111/j.1151-2916.1990.tb06554.x

Liu W., Li N., Wang Y., Xu H., Wang J., Yang J. Preparation and properties of 3–1 type PZT ceramics by a self-organization method. J. Eur. Ceram. Soc., 2015, vol. 35, pp. 3467-3474. https://doi.org/10.1016/j.jeurceramsoc.2015.06.007">https://doi.org/10.1016/j.jeurceramsoc.2015.06.007

Xiang P.-H., Dong X.-L., Chen H., Zhang Z., Guo J.-K. Mechanical and electrical properties of small amount of oxides reinforced PZT ceramics. Ceram. Int., 2003, vol. 29, pp. 499-503. https://doi.org/10.1016/S0272-8842(02)00193-1">https://doi.org/10.1016/S0272-8842(02)00193-1

Zhang H.L., Li J.-F., Zhang B.-P. Fabrication and evaluation of PZT/Ag composites and functionally graded piezoelectric actuators. J. Electroceram., 2006, vol. 16, pp. 413-417. https://doi.org/10.1007/s10832-006-9890-4">https://doi.org/10.1007/s10832-006-9890-4

Takagi K., Li J.-F., Yokoyama S., Watanabe R. Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators. J. Eur. Ceram. Soc., 2003, vol. 23, pp. 1577-1583. https://doi.org/10.1016/S0955-2219(02)00407-7">https://doi.org/10.1016/S0955-2219(02)00407-7

Rybyanets A. N., Shvetsov I.A., Lugovaya M.A., Petrova E.I., Shvetsova N.A. Nanoparticles transport using polymeric nano-and microgranules: novel approach for advanced material design and medical applications. J. Nano- Electron. Phys., 2018, vol. 10, 02005. https://doi.org/10.21272/jnep.10(2).02005">https://doi.org/10.21272/jnep.10(2).02005

Rybyanets A.N., Naumenko A.A. Nanoparticles transport in ceramic matriсes: A novel approach for ceramic matrix composites fabrication. J. Mod. Phys., 2013, vol. 4, pp. 1041-1049. https://doi.org/10.4236/jmp.2013.48140">https://doi.org/10.4236/jmp.2013.48140

Newnham R.E., Skinner D.P., Cross L.E. Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull., 1978, vol. 13, pp. 525-536. https://doi.org/10.1016/0025-5408(78)90161-7">https://doi.org/10.1016/0025-5408(78)90161-7

Nasedkin A., Nassar M.E. Effective properties of a porous inhomogeneously polarized by direction piezoceramic material with full metalized pore boundaries: Finite element analysis. J. Adv. Dielect., 2020, vol. 10, 2050018. http://doi.org/10.1142/S2010135X20500186">http://doi.org/10.1142/S2010135X20500186

Nasedkin A.V., Nasedkina A.A., Nassar M.E. Homogenization of porous piezocomposites with extreme properties at pore boundaries by effective moduli method. Mech. Solids, 2020, vol. 55, pp. 827-836. https://doi.org/10.3103/S0025654420050131">https://doi.org/10.3103/S0025654420050131

Martínez-Ayuso G., Friswell M.I., Khodaparast H.H., Roscow J.I., Bowen C.R. Electric field distribution in porous piezoelectric materials during polarization. Acta Mater., 2019, vol. 173, pp. 332-341. https://doi.org/10.1016/j.actamat.2019.04.021">https://doi.org/10.1016/j.actamat.2019.04.021

Gerasimenko T.E., Kurbatova N.V., Nadolin D.K., Nasedkin A.V., Nasedkina A.A., Oganesyan P.A., Skaliukh A.S., Soloviev A.N. Homogenization of piezoelectric composites with internal structure and inhomogeneous polarization in ACELAN-COMPOS finite element package. Wave dynamics, mechanics and physics of microstructured metamaterials, ed. M. Sumbatyan. Springer, 2019. Pp. 113-131. https://doi.org/10.1007/978-3-030-17470-5_8">https://doi.org/10.1007/978-3-030-17470-5_8

Nasedkin A.V., Nasedkina A.A., Rybyanets A.N. Numerical analysis of effective properties of heterogeneously polarized porous piezoceramic materials with local alloying pore surfaces. Materials Physics & Mechanics, 2018, vol. 40, no. 1, pp. 12-21. http://dx.doi.org/10.18720/MPM.4012018_3">http://dx.doi.org/10.18720/MPM.4012018_3

Nasedkin A.V., Shevtsova M.S. Improved finite element approaches for modeling of porous piezocomposite materials with different connectivity. Ferroelectrics and superconductors: Properties and applications, ed. I.A. Parinov. New York, Nova Science Publ., 2011. Pp. 231-254.

Kudimova A.B., Nasedkin A.V. Limit transitions in plane homogenization problems for two-phase dielectric composites with extreme material properties of one phase. J. Phys.: Conf. Ser., 2021, vol. 1847, 012039. https://doi.org/10.1088/1742-6596/1847/1/012039">https://doi.org/10.1088/1742-6596/1847/1/012039

Kudimova A.B., Nasedkin A.V. About limit transitions in spatial homogenization problems for two-component dielectric composites with extremal moduli for one of phases. Izv. vuzov. Severo-Kavkazskiy region. Estestvennyye nauki – Bulletin of Higher Educational Institutions. North Caucasus Region. Natural Sciences, 2021, no. 1, pp. 25-32. https://doi.org/10.18522/1026-2237-2021-1-25-32">https://doi.org/10.18522/1026-2237-2021-1-25-32

Hori M., Nemat-Nasser S. Universal bounds for effective piezoelectric moduli. Mech. Mater., 1998, vol. 30, pp. 1-19. https://doi.org/10.1016/S0167-6636(98)00029-5">https://doi.org/10.1016/S0167-6636(98)00029-5

Wang J., Li W. A new piezoelectric hollow cylindrical transducer with multiple concentric annular metal fillers. Mater. Res. Express, 2019, vol. 6, 055701. https://doi.org/10.1088/2053-1591/ab0318">https://doi.org/10.1088/2053-1591/ab0318

Du H., Lin X., Zheng H., Qu B., Huang Y., Chu D. Colossal permittivity in percolative ceramic/metal dielectric composites. Journal of Alloys and Compounds, 2016, vol. 663, pp. 848-861. https://doi.org/10.1016/j.jallcom.2015.12.171">https://doi.org/10.1016/j.jallcom.2015.12.171

Published

2021-06-30

Issue

Section

Articles

How to Cite

Nasedkin, A. V., & Nassar, M. A. (2021). Numerical analysis of the effective properties of inhomogeneously polarized porous piezoelectric ceramics with ni-doped pore walls taking into account the influence of volume fractions of metal and pores. Computational Continuum Mechanics, 14(2), 190-202. https://doi.org/10.7242/1999-6691/2021.14.2.16