Numerical investigation of thermo-mechanical behaviour and microstructure evolution of a nickel alloy workpiece during its upsetting

Authors

  • Anatoliy Alekseyevich Rogovoy Institute of Continuous Media Mechanics UB RAS
  • Nelli Kamilevna Salikhova Institute of Continuous Media Mechanics UB RAS

DOI:

https://doi.org/10.7242/1999-6691/2021.14.2.15

Keywords:

hot forming, heat-resistant nickel alloy Waspalloy, dynamic recrystallization, finite element method, Johnson-Mehl-Avrami-Kolmogorov model

Abstract

The use of science-based technologies in commercial production makes it possible to obtain high-quality, competitive finished products. The development of new techniques or optimization of existing technological processes involving the in-depth experimental research requires large time and material costs. In this regard, numerical simulation of the technological process under study can be used as an alternative to a physical experiment. The results obtained by numerical methods will make it possible to substantiate the most appropriate regime of billet deformation, providing the required changes in the structure of the material. This paper considers a specific technological process of hot forming of massive billet consisting of two stages: air cooling of the billet while transporting it from the furnace to deforming tools and forming operation - free upsetting of a billet with the aid of a moving upper flat plate and a stationary cutting lower plate. Computer simulation of upsetting of a large billet with the aim to define a change in its shape, temperature distribution over the surface and throughout the billet, and deformation inhomogeneity arising in the process of got forming was carried out using the Deform-2D/3D software package. The initial temperature distribution of material during pressure forming is determined by modeling air cooling of the billet for 45 seconds during its transportation from the furnace to the deforming equipment. For the obtained inhomogeneous temperature distribution, the calculations were performed to evaluate the force required for billet upsetting to the technology specified average diameter of about 1060 mm at the velocity of the die movement of 100 mm/s. Thee Johnson-Mehl-Avrami-Kolmogorov (JMAK) model was used to investigate the evolution of the microstructure (average grain size and recrystallized volume fraction) of the Waspalloy nickel alloy generated as a result of dynamic recrystallization in the process of hot forming of a billet at the strain rate of 100 mm/s.

Downloads

Download data is not yet available.

References

Rogovoy A.A., Salikhova N.K. Numerical investigation of the evolution of microstructure of nickel-based alloys during plastic working. Vychis. mekh. splosh. sred – Computational continuum mechanics, 2019, vol. 12, no. 3, pp. 271-280. https://doi.org/10.7242/1999-6691/2019.12.3.23">https://doi.org/10.7242/1999-6691/2019.12.3.23

Gorelik S.S., Dobatkin S.V., Kaputkina L.M. Rekristallizatsiya metallov i splavov [Recrystallization of metals and alloys]. Moscow, MISIS, 2005. 432 p.

Hässner F. (ed.) Recrystallization of metallic materials. Dr. Riederer Verlag, 1978. 293 p.

Bernshteyn M.L. Struktura deformirovannykh metallov [The structure of deformed metals]. Moscow, Metallurgiya, 1977. 432 p.

Gromov N.P. Teoriya obrabotki metallov davleniyem [Theory of metal forming.]. Moscow, Metallurgiya, 1978. 360 p.

Okhrimenko Ya.M., Tyurin V.A. Teoriya protsessov kovki [Theory of forging processes]. Moscow, Vysshaya shkola, 1977. 295 p.

Semenov E.I. (ed.) Kovka i shtampovka: Spravochnik. T. 1. Materialy i nagrev. Oborudovaniye. Kovka [Forging and Stamping: A handbook. Vol. 1. Materials and heating. Equipment. Forging]Moscow, Mashinostroyeniye, 1985. 568 p.

DEFORMТМ 3D Version 6.1 (sp2). User’s Manual. Scientific Forming Technologies Corporation, 2008. 415 p.

Prakticheskoye rukovodstvo k programmnomu kompleksu DEFORM-3D [A practical guide to the DEFORM-3D software package]. Ekaterinburg: UrFU, 2010. 266 p.

Samarskiy A.A., Vabishchevich P.N. Vychislitel’naya teploperedacha [Computational heat transfer]. Moscow, Editorial URSS, 2003. 784 p.

Kobayashi S., Oh S., Altan T. Metal forming and the finite element method. Oxford University Press, 1989. 377 p.

Ivanov K.M. (ed.) Prikladnaya teoriya plastichnosti [Applied theory of plasticity]. St. Petersburg, Politekhnika, 2011. 375 p.

Unksov E.P., Ovchinnikov A.G. (ed.) Teoriya plasticheskikh deformatsiy metallov [Theory of plastic deformations of metals]. Moscow, Mashinostroyeniye, 1983. 598 p.

Isachenko V.P., Osipov V.A., Sukomel A.S. Teploperedacha [Heat transfer]. Moscow, Energoizdat, 1981. 416 p.

Zhavoronkov N.M. (ed.) Legkiye i zharoprochnyye splavy i ikh obrabotka [Light and heat-resistant alloys and their processing]. Moscow, Nauka, 1986. 304 p.

https://www.wepuko.de/ru/gidravlicheskie-kovochnye-pressy/produkcija/pressy-svobodnoi-kovki/">https://www.wepuko.de/ru/gidravlicheskie-kovochnye-pressy/produkcija/pressy-svobodnoi-kovki/ (accessed 1 June 2021).

Storozhev M.V. (ed.) Kovka i ob”yemnaya shtampovka stali. Spravochnik. T. 2. [Forging and die forging of steel. A handbook. Vol. 2]. Moscow, Mashinostroyeniye, 1968. 448 p.

Srolovitz D.J., Grest G.S., Anderson M.P. Computer simulation of grain growth – V. Abnormal grain growth. Acta metall., 1985, vol. 33, pp. 2233-2247. https://doi.org/10.1016/0001-6160(85)90185-3">https://doi.org/10.1016/0001-6160(85)90185-3

Meccozi V.G., Eiken J., Santofimia M.J., Sietsma J. Phase field modeling of microstructural evolution during the quenching and partitioning treatment in low-allloy steels. Comput. Mater. Sci., 2016, vol. 112, part A, pp. 245-256. https://doi.org/10.1016/j.commatsci.2015.10.048">https://doi.org/10.1016/j.commatsci.2015.10.048

An D., Pan S., Huang L., https://www.jstage.jst.go.jp/search/global/_search/-char/en?item=8&word=Ting+Dai">Dai T., Krakauer B., Zhu M. Modeling of ferrite-austenite phase transformation using a cellular automation model. ISIJ Int., 2014, vol. 54, pp. 422-429. https://doi.org/10.2355/isijinternational.54.422">https://doi.org/10.2355/isijinternational.54.422

Raabe D. Celluar automata in materials science with particular reference to recrystallization simulation. Annu. Rev. Mater. Res., 2002, vol. 32, pp. 53-76. https://doi.org/10.1146/annurev.matsci.32.090601.152855">https://doi.org/10.1146/annurev.matsci.32.090601.152855

Bergstrom Y. A dislocation model for the stress-strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations. Mater. Sci. Eng., 1970, vol. 5, pp. 193-200. https://doi.org/10.1016/0025-5416(70)90081-9">https://doi.org/10.1016/0025-5416(70)90081-9

Lopatin N.V., Gorbushina S.N., Dyakonov G.S., Kydriavchev E.A., Vidumkina S.V. Simulation of microstructure evolutions of vt6 alloy during isothermal forging using Deform software. Komp’yuternyye issledovaniya i modelirovaniye – Computer Research and Modeling, 2014, vol. 6, no. 6, pp. 975-982. https://doi.org/10.20537/2076-7633-2014-6-6-975-982">https://doi.org/10.20537/2076-7633-2014-6-6-975-982

Avrami M. Kinetics of phase change. I. General theory. J. Chem. Phys., 1939, vol. 7, pp. 1103-1112. https://doi.org/10.1063/1.1750380">https://doi.org/10.1063/1.1750380

Avrami M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys., 1940, vol. 8, pp. 212-224. https://doi.org/10.1063/1.1750631">https://doi.org/10.1063/1.1750631

Avrami M. Kinetics of phase change. III. Granulation, phase change, and microstructure. J. Chem. Phys., 1941, vol. 9, pp. 177-184. https://doi.org/10.1063/1.1750872">https://doi.org/10.1063/1.1750872

Johnson W.A., Mehl R.F. Reaction kinetics in process of nucleation and growth. Trans. Am. Inst. Min. Met. Eng., 1939, vol. 135, pp. 416-442.

Alimov A.I., Voronezhskiy E.V. Matematicheskoye modelirovaniye evolyutsii mikrostruktury pokovki v protsesse termomekhanicheskoy obrabotki [Mathematical modeling of the evolution of the forging microstructure during thermomechanical processing]. Nauka i obrazovaniye – Science and Education, 2011, no. 8, 15 p.

Sellars C.M., McTegart W.J. On the mechanism of hot deformation. Acta Metall., 1966, vol. 14, pp. 1136-1138. https://doi.org/10.1016/0001-6160(66)90207-0">https://doi.org/10.1016/0001-6160(66)90207-0

Sellars C.M. The kinetics of softening process during hot working of austenite. Czech. J. Phys., 1985, vol. 35, pp. 239-248. https://doi.org/10.1007/BF01605090">https://doi.org/10.1007/BF01605090

Published

2021-06-30

Issue

Section

Articles

How to Cite

Rogovoy, A. A., & Salikhova, N. K. (2021). Numerical investigation of thermo-mechanical behaviour and microstructure evolution of a nickel alloy workpiece during its upsetting. Computational Continuum Mechanics, 14(2), 177-189. https://doi.org/10.7242/1999-6691/2021.14.2.15