Plane vortex flow in a cylindrical layer

Authors

  • Vladimir Nikolayevich Kolodezhnov Air Force Academy named after N.E. Zhukovsky and Y.A. Gagarin

DOI:

https://doi.org/10.7242/1999-6691/2021.14.2.13

Keywords:

viscous incompressible fluid, plane spiral flow, boundary conditions, the second invariant of the strain rate tensor, streamlines, inflection point

Abstract

This paper presents brief analysis of publications dealing with the issues of experimental and theoretical studies of spiral fluid flows. The flows of this kind occur, in particular, in the vicinity of drain holes and are also observed in nature as storms and tornadoes. A mathematical modeling of a plane flow in a cylindrical layer has been carried out assuming that the viscous incompressible fluid is supplied along the normal to its outer surface and, accordingly, the vortex flow happens through its inner surface. The well-known general solution of the problem of vortex flow in unlimited space has been taken as a basis. A variant setting of the two boundary conditions for determining the velocity azimuthal component is proposed. The first boundary condition is the requirement for the azimuthal velocity component absence at the cylindrical layer entrance. The second, less obvious, boundary condition is adopted in the form when the strain rate tensor second invariant value is set at the cylindrical layer entrance. The rationale for such variant setting of the second boundary condition is given. Finally, it became possible to find an acсurate solution to the problem in a general setting. It is shown that at the layer exit, the velocity azimuthal component, which was initially absent at the layer entrance, can exceed the radial velocity component by an order of magnitude or more. A family of streamlines is constructed for the examined flow in the polar coordinate system. It is shown that, in the general case, the streamlines for the flow under consideration must have an inflection point. The numerical dependence of the inflection point position radial coordinate on the Reynolds number was obtained. It is also shown that in the cylindrical layer exit vicinity the fluid pressure takes on lower values than for the purely radial flow case. An alternative formulation of the second boundary condition for the pressure is presented for determining the integration constants in the azimuthal velocity component expression.

Downloads

Download data is not yet available.

References

Polikovskiy V.I., Perel’man R.G. Voronkoobrazovaniye v zhidkosti s otkrytoy poverkhnost’yu [Funnel formation in open surface fluids]. Мoscow, Gosenergoizdat, 1959. 190 p.

Pavel'ev A.A., Shtarev A.A. Experiment on vortex formation in a fluid flowing out of a reservoir. Fluid Dyn., 2001, vol. 36, pp. 851-854. https://doi.org/10.1023/A:1013093406981">https://doi.org/10.1023/A:1013093406981

Shtarev A.A. Experimental study of the rate of unsteady fluid flow from a prefilled vessel. Fluid Dyn., 2005, vol. 40, pp. 266-272. https://doi.org/10.1007/s10697-005-0066-8">https://doi.org/10.1007/s10697-005-0066-8

Karlikov V.P., Rozin A.V., Tolokonnikov S.L. Numerical analysis of funnel formation during unsteady fluid outflow from a rotating cylindrical vessel. Fluid Dyn., 2007, vol. 42, pp. 766-772. https://doi.org/10.1134/S0015462807050092">https://doi.org/10.1134/S0015462807050092

Karlikov V.P., Rozin A.V., Tolokonnikov S.L. On the problem of funnel formation during liquid outflow from vessels. Fluid Dyn., 2008, vol. 43, pp. 461-470. https://doi.org/10.1134/S0015462808030137">https://doi.org/10.1134/S0015462808030137

Orlov V.V., Temnov A.N., Tovarnykh G.N. Eksperimental’noye issledovaniye istecheniya vrashchayushcheysya zhidkosti [Experimental study of the outflow of a rotating fluid]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroyeniye – Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2011, no. 2, pp. 23-34.

Nalivkin D.B Uragany, buri i smerchi. Geograficheskiye osobennosti i geologicheskaya deyatel’nost’ [Hurricanes, storms and tornadoes. Geographical features and geological activities]. Leningrad, Nauka, 1969. 487 p.

Yih C.-S. Tornado-like flows. Phys. Fluids, 2007, vol. 19, 076601. https://doi.org/10.1063/1.2742728">https://doi.org/10.1063/1.2742728

Varaksin A.Yu., Romash M.E., Kopeytsev V.N. Tornado. Begell House, 2015. 394 p.

Kurgansky M.V. A simple hydrodynamic model of tornado-like vortices. Izv. Atmos. Ocean. Phys., 2015, vol. 51, pp. 292-298. https://doi.org/10.1134/S000143381503007X">https://doi.org/10.1134/S000143381503007X

Varaksin A.Yu. Air tornado-like vortices: Mathematical modeling (a Review). High Temp., 2017, vol. 55, pp. 286-309. https://doi.org/10.1134/S0018151X17020201">https://doi.org/10.1134/S0018151X17020201

Greenspan H.P. The theory of rotating fluids. Cambridge Universsity Press, 1968. 327 p.

Gol’dshtik M.A. Vikhrevyye potoki [Vortex flows]. Novosibirsk, Nauka, 1981. 366 p.

Lugt H.J. Vortex flows in nature and technology. Jons Wiley & Sons, 1983. 297 p.

Alekseyenko S.V., Kuybin P.A., Okulov V.L. Vvedeniye v teoriyu kontsentrirovannykh vikhrey [Introduction to the theory of concentrated vortices]. Novosibirsk, In-t teplofiziki SO RAN, 2003. 504 p.

Andreyev V.K., Gaponenko Yu.A., Goncharova O.N., Pukhnachev V.V. Sovremennyye matematicheskiye modeli konvektsii [Modern mathematical models of convection]. Moscow, Fizmatlit, 2008. 368 p.

Pukhnachev V.V. Invariant solutions of Navier-Stokes equations describing motions with free boundary. DAN SSSR – Dokl. Akad. Nauk SSSR, 1972, vol. 202, no. 2, pp. 302-305.

Goldshtik M.A., Yavorskii N.I. A rotating disk on an air cushion. Dokl. Math., 1989, vol. 34, pp. 873-875.

Borissov A., Shtern V., Hussain F. Modeling flow and heat transfer in vortex burners. AIAAJ, 1998, vol. 36, pp. 1665-1670. https://doi.org/10.2514/2.569">https://doi.org/10.2514/2.569

Aristov S.N., Pukhnachev V.V. On the equations of axisymmetric motion of a viscous incompressible fluid. Dokl. Phys., 2004, vol. 49, pp. 112-115. https://doi.org/10.1134/1.1686882">https://doi.org/10.1134/1.1686882

Gaifullin A.M., Zubtsov A.V. Diffusion of two vortices. Fluid Dyn., 2004, vol. 39, pp. 112-127. https://doi.org/10.1023/B:FLUI.0000024817.33826.8d">https://doi.org/10.1023/B:FLUI.0000024817.33826.8d

Gaifullin A.M. Self-similar unsteady viscous flow. Fluid Dyn., 2005, vol. 40, pp. 526-531. https://doi.org/10.1007/s10697-005-0091-7">https://doi.org/10.1007/s10697-005-0091-7

Shtern V.N., Borissov A.A. Nature of counterflow and circulation in vortex separators. Phys. Fluids., 2010, vol. 22, 083601. https://doi.org/10.1063/1.3475818">https://doi.org/10.1063/1.3475818

Zhuravleva E.N., Pukhnachev V.V. Numerical study of bifurcations in spiral fluid flow with free boundary. Vychisl. mekh. splosh. sred – Computational continuum mechanics, 2014, vol. 7, no. 1, pp. 82-90. https://doi.org/10.7242/1999-6691/2014.7.1.9">https://doi.org/10.7242/1999-6691/2014.7.1.9

Aristov S.N., Prosviryakov E.Yu. Large-scale flows of viscous incompressible vortical fluid. Russ. Aeronaut., 2015, vol. 58, pp. 413-418. https://doi.org/10.3103/S1068799815040091">https://doi.org/10.3103/S1068799815040091

Prosviryakov E.Yu. Tochnye resheniya trekhmernykh potentsial’’nykh i zavikhrennykh techeniy Kuetta vyazkoy neszhimaemoy zhidkosti [Exact solutions of three-dimensional potential and vertical Couetta flows of a viscous incompressible liquid]. Vestnik NIYaU MIFI, 2015, vol. 4, no. 6, pp. 501-506.

Markov V.V., Sizykh G.B. Vorticity evolution in liquids and gases. Fluid Dyn., 2015, vol. 50, pp. 186-192. https://doi.org/10.1134/S0015462815020027">https://doi.org/10.1134/S0015462815020027

Aristov S.N., Prosvipyakov E.Yu. Unsteady layered vortical fluid flows. Fluid Dyn., 2016, vol. 51, pp. 148-154. https://doi.org/10.1134/S0015462816020034">https://doi.org/10.1134/S0015462816020034

Yavorsky N.I., Meledin V.G., Kabardin I.K., Gordienko M.R., Pravdina M.K., Kulikov D.V., Polyakova V.I., Pavlov V.A. Velocity field diagnostics inside the Ranque-Hilsh vortex tube with square cross-section. AIP Conf. Proc., 2018, vol. 2027, 030122. https://doi.org/10.1063/1.5065216">https://doi.org/10.1063/1.5065216

Sizykh G.B. Axisymmetric helical flows of viscous fluid. Russ. Math., 2019, vol. 63, pp. 44-50. https://doi.org/10.3103/S1066369X19020063">https://doi.org/10.3103/S1066369X19020063

Bautin S.P., Krutova I.Yu. Twisting of smooth gas flow under the action of gravity and coriolis forces. High Temp., 2012, vol. 50, pp. 444-446. https://doi.org/10.1134/S0018151X12030042">https://doi.org/10.1134/S0018151X12030042

Taylor G.I. Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. Roy. Soc Lond. A, 1923, vol. 223, pp. 289-343. https://doi.org/10.1098/rsta.1923.0008">https://doi.org/10.1098/rsta.1923.0008

Cole J.A. Taylor-vortex instability and annulus-length effects. J. Fluid Mech., 1976, vol. 75, pp. 1-15. https://doi.org/10.1017/S0022112076000098">https://doi.org/10.1017/S0022112076000098

Andereck C.D., Liu S.S., Swinney H.L. Flow regimes in circular Couette system with independently rotating cylinders. J. Fluid Mech., 1986, vol. 164, pp. 155-183. https://doi.org/10.1017/S0022112086002513">https://doi.org/10.1017/S0022112086002513

Meseguer A., Marques F. On the competition between centrifugal and shear instability in spiral Couette flow. J. Fluid Mech., 2000, vol. 402, pp. 33-56. https://doi.org/10.1017/S0022112099006679">https://doi.org/10.1017/S0022112099006679

Reinke P., Schmidt M., Beckmann T. The cavitating Taylor-Couette flow. Phys. Fluids., 2018, vol. 30, 104101. https://doi.org/10.1063/1.5049743">https://doi.org/10.1063/1.5049743

Shtern V. A flow in the depth of infinite annular cylindrical cavity. J. Fluid Mech., 2012, vol. 711, pp. 667-680. https://doi.org/10.1017/jfm.2012.429">https://doi.org/10.1017/jfm.2012.429

Sullivan R.D. A two-cell vortex solution of the Navier-Stokes equations. JAS, 1959, vol. 26, pp. 767-768. https://doi.org/10.2514/8.8303">https://doi.org/10.2514/8.8303

Gol'dshtik M.A. A class of exact solutions of the Navier-Stokes equations. J. Appl. Mech. Tech. Phys., 1966, vol. 7, pp. 70-72. https://doi.org/10.1007/BF0091698">https://doi.org/10.1007/BF0091698

Shtern V., Borisov A., Hussain F. Vortex-sinks with axial flows: Solution and applications. Phys. Fluids., 1997, vol. 9, pp. 2941-2959. https://doi.org/10.1063/1.869406">https://doi.org/10.1063/1.869406

Loitsyanskii L.G. Mechanics of liquids and gases. Pergamon Press, 1966. 804 p.

Slezkin N.A. Dinamika vyazkoy neszhimayemoy zhidkosti [Dinamics of a viscous incompressible fluid]. Moscow, Gosudarstvennoye izdatel’stvo tekhniko-teoreticheskoy literatury, 1955. 520 p.

Published

2021-06-30

Issue

Section

Articles

How to Cite

Kolodezhnov, V. N. (2021). Plane vortex flow in a cylindrical layer. Computational Continuum Mechanics, 14(2), 159-170. https://doi.org/10.7242/1999-6691/2021.14.2.13