Validation of a thermo-hydro-mechanical model of freezing of water-saturated soil based on laboratory tests results

Authors

  • Maksim Sergeyevich Zhelnin Institute of Continuous Media Mechanics UB RAS
  • Anastasiya Andreyevna Kostina Institute of Continuous Media Mechanics UB RAS
  • Aleksandr Evgen’yevich Prokhorov Institute of Continuous Media Mechanics UB RAS
  • Oleg Anatol’yevich Plekhov Institute of Continuous Media Mechanics UB RAS
  • Mikhail Aleksandrovich Semin Mining Institute UB RAS
  • Kirill Alekseyevich Agutin Institute of Nature Management of NAS of Belarus

DOI:

https://doi.org/10.7242/1999-6691/2021.14.2.12

Keywords:

artificial ground freezing, frost heave, numerical simulation, fiber-optic sensor

Abstract

Frost heave of freezing water-saturated soils is an important worldwide problem from an engineering point of view. In cold regions, this phenomenon significantly affects foundations of buildings and road pavements. Application of artificial ground freezing to underground construction due to frost heave can cause an undesirable uplift of the ground surface and an increase in pressure acting on a lining and frozen wall. In the present paper, a mathematical model of soil freezing enabling one to predict soil deformation due to phase transformation of pore water into ice is proposed. The model is based on a set of nonlinear equations of water transfer, heat transfer, and equilibrium which are solved relative to porosity, temperature, and displacement variables. Constitutive relations of the poromechanics theory along with Bishop-type effective stress are used to simulate the mechanical behavior of soil during the process of pore water freezing and to evaluate pore pressure depending on a changein porosity and volumetric strain. Moreover, equations of the associated flow rule of plasticity are incorporated into the model to describe an inelastic volumetric expansion of the freezing soil induced by pore ice pressure. The ability of the model to capture essential features of the freezing process of water-saturated soils is demonstrated by numerical simulation of two laboratory tests. For the first test, a comparison between results of the numerical simulation and experimental measurements of variations of temperature and uplift of the top surface of silty clay specimens with time has been conducted. It has been shown that the numerical results are highly consistent with the measurements when the soil specimen is frozen with the growth of a massive cryogenic structure. In the numerical simulation of the second test, the calculated radial deformation of freezing soil is in good agreement with the experimental measurements, obtained by a fiber-optical sensor during the radial freezing of the quartz sand sample in a closed system.

Downloads

Download data is not yet available.
Supporting Agencies
Теоретические исследования в разделах 2 и 3.1 выполнены при финансовой поддержке РФФИ (проект № 19-31-90107); экспериментальные исследования в разделе 3.2 выполнены при поддержке Министерства образования и науки Пермского края (соглашение № С-26/563 от 23 марта 2021 года).

References

Kiselev M.F. Preduprezhdeniye deformatsii gruntov ot moroznogo pucheniya [Prevention of ground deformation due to frost heave]. Leningrad, Stroyizdat. Leningr. otd-niye, 1985. 130 p.

Tayukin G.I., Fursov V.V., Balura M.V. Seasonal soil freezing impact on foundations of buildings (liquefied hydrocarbon depot terminal). Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta – Journal of Construction and Architecture, 2019, no. 6, pp. 186-198. https://doi.org/10.31675/1607-1859-2019-21-6-186-198">https://doi.org/10.31675/1607-1859-2019-21-6-186-198

Yang B., Qin Z., Zhou Q., Li H., Li L., Yang X. Pavement damage behaviour of urban roads in seasonally frozen saline ground regions. Cold Regions Sci. Tech., 2020, vol. 174, 103035. https://doi.org/10.1016/j.coldregions.2020.103035">https://doi.org/10.1016/j.coldregions.2020.103035

Long X., Cen G., Cai L., Chen Y. Model experiment of uneven frost heave of airport pavement structure on coarse-grained soils foundation. Construct. Build. Mater., 2018, vol. 188, pp. 372-380. https://doi.org/10.1016/j.conbuildmat.2018.08.100">https://doi.org/10.1016/j.conbuildmat.2018.08.100

Gorelik J.B. Metody rascheta deformatsiy inzhenernykh konstruktsiy, vyzvannykh pucheniyem porod promerzayushchego sloya [On the calculation methods of the engineering construction displacements caused by freezing layer frost heave process]. Kriosfera Zemli – Earth’s Cryosphere, 2010, vol. 14, no. 1, pp. 50-62.

Teng Z.-C., Liu X.-Y., Liu Y., Zhao Y.-X., Liu K.-Q., Teng Y.-C. Stress–strain assessments for buried oil pipelines under freeze-thaw cyclic conditions. J. Pressure Vessel Technol., 2021, vol. 143(4), 041803. https://doi.org/10.1115/1.4049712">https://doi.org/10.1115/1.4049712

Cai H., Li S., Liang Y., Yao Z., Cheng H. Model test and numerical simulation of frost heave during twin-tunnel construction using artificial ground-freezing technique. Computers and Geotechnics, 2019, vol. 115, 103155. https://doi.org/10.1016/j.compgeo.2019.103155">https://doi.org/10.1016/j.compgeo.2019.103155

Zhou J., Zhao W., Tang Y. Practical prediction method on frost heave of soft clay in artificial ground freezing with field experiment. Tunnelling and Underground Space Technology, 2021, vol. 107, 103647. https://doi.org/10.1016/j.tust.2020.103647">https://doi.org/10.1016/j.tust.2020.103647

Khakimov Kh.R. Voprosy teorii i praktiki iskusstvennogo zamorazhivaniya gruntov [Problems in the theory and practice of artificial freezing of soil]. Moscow, Izd-vo Akad. nauk SSSR, 1957. 191 p.

Orlov V.O., Kim V.K. A method of evaluating the frost-heave pressure of soil against the ice-soil enclosure of an underground structure. Soil Mech. Found. Eng., 1988, vol. 25, pp. 129-135. https://doi.org/10.1007/BF01709718">https://doi.org/10.1007/BF01709718

Ji Y., Zhou G., Hall M.R. Frost heave and frost heaving-induced pressure under various restraints and thermal gradients during the coupled thermal–hydro processes in freezing soil. Bull. Eng. Geol. Environ., 2019, vol. 78, pp. 3671-3683. https://doi.org/10.1007/s10064-018-1345-z">https://doi.org/10.1007/s10064-018-1345-z

Sumgin M.I. Fiziko-mekhanicheskiye protsessy vo vlazhnykh i merzlykh gruntakh v svyazi s obrazovaniyem puchin na dorogakh [Physical and mechanical processes in wet and frozen soils in connection with the formation of abyss on the roads]. Moscow, Transpechat’ NKPS, 1929. 592 p.

Taber S. Frost heaving. J. Geol., 1929, vol. 37, no. 5, pp. 428-461.

Taber S. The mechanics of frost heaving. J. Geol., 1930, vol. 38, no. 4, pp. 303-317.

Tsytovich N.A. The mechanics of frozen ground. McGraw-Hill, 1975. 426 p.

Hoekstra P. Moisture movement in soils under temperature gradients with the cold‐side temperature below freezing. Water Resour. Res., 1966, vol. 2, pp. 241-250. https://doi.org/10.1029/WR002i002p00241">https://doi.org/10.1029/WR002i002p00241

Penner E., Gold L.W. Transfer of heaving forces by adfreezing to columns and foundation walls in frost-susceptible soils. Canadian Geotechnical Journal, 1971, vol. 8, pp. 514-526. https://doi.org/10.1139/t71-053">https://doi.org/10.1139/t71-053

Ivanov N.S. Teplo- i massoperenos v merzlykh gornykh porodakh [Heat and mass transfer in frozen ground]. Moscow, Nauka, 1969. 240 p.

Harlan R.L. Analysis of coupled heat‐fluid transport in partially frozen soil. Water Resour. Res., 1973, vol. 9, pp. 1314-1323. https://doi.org/10.1029/WR009i005p01314">https://doi.org/10.1029/WR009i005p01314

O'Neill K., Miller R.D. Exploration of a rigid ice model of frost heave. Water Resour. Res., 1985, vol. 21, pp. 281-296. https://doi.org/10.1029/WR021i003p00281">https://doi.org/10.1029/WR021i003p00281

Coussy O. Poromechanics of freezing materials. J. Mech. Phys. Solid., 2005, vol. 53, pp. 1689-1718. https://doi.org/10.1016/j.jmps.2005.04.001">https://doi.org/10.1016/j.jmps.2005.04.001

Zhou M.M., Meschke G. A three‐phase thermo‐hydro‐mechanical finite element model for freezing soils. Int. J. Numer. Anal. Meth. Geomech., 2013, vol. 37, pp. 3173-3193. https://doi.org/10.1002/nag.2184">https://doi.org/10.1002/nag.2184

Tounsi H., Rouabhi, A., Tijani M., Guérin F. Thermo-hydro-mechanical modeling of artificial ground freezing: Application in mining engineering. Rock Mech. Rock Eng., 2019, vol. 52, pp. 3889-3907. https://doi.org/10.1007/s00603-019-01786-9">https://doi.org/10.1007/s00603-019-01786-9

Nishimura S., Gens A., Olivella S., Jardine R.J. THM-coupled finite element analysis of frozen soil: Formulation and application. Géotechnique, 2009, vol. 59, pp. 159-171. https://doi.org/10.1680/geot.2009.59.3.159">https://doi.org/10.1680/geot.2009.59.3.159

Ghoreishian Amiri S.A., Grimstad G., Kadivar M., Nordal S. Constitutive model for rate-independent behavior of saturated frozen soils. Canadian Geotechnical Journal, 2016, vol. 53, pp. 1646-1657. https://doi.org/10.1139/cgj-2015-0467">https://doi.org/10.1139/cgj-2015-0467

Zhou J., Li D. Numerical analysis of coupled water, heat and stress in saturated freezing soil. Cold Regions Sci. Tech., 2012, vol. 72, pp. 43-49. https://doi.org/10.1016/j.coldregions.2011.11.006">https://doi.org/10.1016/j.coldregions.2011.11.006

Lai Y., Pei W., Zhang M., Zhou J. Study on theory model of hydro-thermal-mechanical interaction process in saturated freezing silty soil. Int. J. Heat Mass Tran., 2014, vol. 78, pp. 805-819. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.035">https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.035

Arzanfudi M.M., Al-Khoury R. Freezing-thawing of porous media: An extended finite element approach for soil freezing and thawing. Adv. Water Resour., 2018, vol. 119, pp. 210-226. https://doi.org/10.1016/j.advwatres.2018.07.013">https://doi.org/10.1016/j.advwatres.2018.07.013

Kosheleva N.A., Serovaev G.S. Modeling a stressed state in the vicinity of an optical fiber embedded in a polymer composite material with allowance for the structural features of the composite. J. Appl. Mech. Tech. Phy., 2018, vol. 59, pp. 1271-1278. https://doi.org/10.1134/S0021894418070088">https://doi.org/10.1134/S0021894418070088

Fedorov A.Y., Kosheleva N.A., Matveenko V.P., Serovaev G.S. Strain measurement and stress analysis in the vicinity of a fiber Bragg grating sensor embedded in a composite material. Compos. Struct., 2020, vol. 239, 111844. https://doi.org/10.1016/j.compstruct.2019.111844">https://doi.org/10.1016/j.compstruct.2019.111844

Ren G., Li T., Hu Z., Zhang C. Research on new FBG soil pressure sensor and its application in engineering. Optik, 2019, vol. 185, pp. 759-771. https://doi.org/10.1016/j.ijleo.2019.03.019">https://doi.org/10.1016/j.ijleo.2019.03.019

Zhelnin M.S., Prokhorov A.E., Kostina A.A., Plekhov O.A. Experimental and theoretical study of mechanical deformation of freezing saturated soil. Vestnik PNIPU. Mekhanika – PNRPU Mechanics Bulletin, 2019, no. 4, pp. 19-28. https://doi.org/10.15593/perm.mech/2019.4.02">https://doi.org/10.15593/perm.mech/2019.4.02

Zhao X., Lv X., Wang L., Zhu Y., Dong H., Chen W., Li J., Ji B., Ding Y. Research of concrete residual strains monitoring based on WLI and FBG following exposure to freeze-thaw tests. Cold Regions Sci. Tech., 2015, vol. 116, pp. 40-48. https://doi.org/10.1016/j.coldregions.2015.04.007">https://doi.org/10.1016/j.coldregions.2015.04.007

Wang M., Li X., Chen L., Hou S., Wu G., Deng Z. A modified soil water content measurement technique using actively heated fiber optic sensor. Journal of Rock Mechanics and Geotechnical Engineering, 2020, vol. 12, pp. 608-619. https://doi.org/10.1016/j.jrmge.2019.11.003">https://doi.org/10.1016/j.jrmge.2019.11.003

Sun M.-Y., Shi B., Zhang D., Liu J., Guo J.Y., Wei G.-Q., Cheng W. Study on calibration model of soil water content based on actively heated fiber-optic FBG method in the in-situ test. Measurement, 2020, vol. 165, 108176. https://doi.org/10.1016/j.measurement.2020.108176">https://doi.org/10.1016/j.measurement.2020.108176

Thomas H.R., Cleall P., Li Y.-C., Harris C., Kern-Luetschg M. Modelling of cryogenic processes in permafrost and seasonally frozen soils. Géotechnique, 2009, vol. 59, pp. 173-184. https://doi.org/10.1680/geot.2009.59.3.173">https://doi.org/10.1680/geot.2009.59.3.173

Nixon J.F. Discrete ice lens theory for frost heave in soils. Canadian Geotechnical Journal, 1991, vol. 28, pp. 843-859. https://doi.org/10.1139/t91-102">https://doi.org/10.1139/t91-102

Mu S., Ladanyi B. Modelling of coupled heat, moisture and stress field in freezing soil. Cold Regions Sci. Tech., 1987, vol. 14, pp. 237-246. https://doi.org/10.1016/0165-232X(87)90016-4">https://doi.org/10.1016/0165-232X(87)90016-4

Tounsi H., Rouabhi A., Jahangir E. Thermo-hydro-mechanical modeling of artificial ground freezing taking into account the salinity of the saturating fluid. Computers and Geotechnics, 2020, vol. 119, 103382. https://doi.org/10.1016/j.compgeo.2019.103382">https://doi.org/10.1016/j.compgeo.2019.103382

Published

2021-06-30

Issue

Section

Articles

How to Cite

Zhelnin, M. S., Kostina, A. A., Prokhorov, A. E., Plekhov, O. A., Semin, M. A., & Agutin, K. A. (2021). Validation of a thermo-hydro-mechanical model of freezing of water-saturated soil based on laboratory tests results. Computational Continuum Mechanics, 14(2), 144-158. https://doi.org/10.7242/1999-6691/2021.14.2.12