The influence of chemical reaction parameters on the interaction of thermal, diffusion and mechanical waves under surface treatment by a particle beam

Authors

  • Elena Sergeyevna Parfenova Institute of Strength Physics and Materials Science SB RAS
  • Anna Georgiyevna Knyazeva Institute of Strength Physics and Materials Science SB RAS

DOI:

https://doi.org/10.7242/1999-6691/2021.14.1.7

Keywords:

coupled model, particle beam, wave propagation, nonlinear effects, elastic stresses, diffusion, heat conduction, relaxation of heat flux, relaxation of mass flux, chemical reaction

Abstract

A coupled non-isothermal model of the penetration process of a material into a target surface under conditions of surface treatment with a particle beam is presented. The model takes into account the interaction of impurity diffusion, heat propagation, mechanical disturbances and the chemical reaction between the introduced impurity and the substrate material. The problem is formulated in terms of dimensionless variables. All model parameters and the range of numerical values are given. The problem is solved numerically using an implicit symmetric difference scheme of the second order approximation in time and coordinates. The solutions are obtained for different time intervals determined by the characteristic pulse action time and relaxation times for diffusion and thermal conductivity. It has been established that the interrelation of processes of different scales leads to the appearance of distortions on strain and stress waves, and the distributions of temperature and impurity concentration acquire a wave character. The formation of chemical compound leads to a decrease in the concentration of impurities and to an increase in temperature, stresses and deformation. It is shown that the chemical reaction at low heat generation proceeds only as long as the temperature increases due to the introduced energy. It has been found that, at slow formation of the product in the reaction, the chemical interaction practically does not affect the propagation of temperature, deformation, stresses and impurity concentration.

Downloads

Download data is not yet available.
Supporting Agencies
Исследование выполнено при финансовой поддержке РФФИ и Госкорпорации «Росатом» в рамках научного проекта № 20-21-00064Росатом.

References

Kolesnikov V.I., Kudryakov O.V., Zabiyaka I.Yu., Novikov E.S., Manturov D.S. Structural aspects of wear resistance of coatings deposited by physical vapor deposition. Phys. Mesomech., 2020, vol. 23, pp. 570-583. https://doi.org/10.1134/S1029959920060132">https://doi.org/10.1134/S1029959920060132

Panin V.E., Narkevich N.A., Durakov V.G., Shulepov I.A. Control over the structure and wear resistance of an electron beam overlay coating of carbon-nitrogen austenitic steel. Fiz. mezomekh– Physical mesomechanics, 2020, vol. 23, no. 2, pp. 15-23. https://doi.org/10.24411/1683-805X-2020-12002">https://doi.org/10.24411/1683-805X-2020-12002

Byeli A.V., Kukareko V.A., Kononov A.G., Bilenko E.G. Structure transformations and amorphization of Fe-Zr alloy under irradiation with nitrogen ion intense flows. J. Synch. Investig., 2008, vol. 2, pp. 340-343. https://doi.org/10.1134/S1027451008030026">https://doi.org/10.1134/S1027451008030026

Kurzina I.A., Popova N.A., Nikonenko E.L., Kalashnikov M.P., Savkin K.P., Sharkeev Yu.P., Kozlov E.V. Influence of the irradiated dose on structural state and phase composition of surface layers ultrafine-titanium. Izv. vuzov. Fizika – Russian Physics Journal, 2014, vol. 57, no. 7-2, pp. 74-78.

Vershinin G.A., Grekova T.S., Gering G.I., Kurzina I.A., Sharkeev Yu.P. Analysis of concentration field formation in titanium under aluminum ion implantation via a gas-and-metal film deposited on a target surface. J. Synch. Investig., 2012, vol. 6, pp. 251-254. https://doi.org/10.1134/S1027451012030226">https://doi.org/10.1134/S1027451012030226

Valyayev A.N. Modifikatsiya svoystv materialov i sintez tonkikh plenok pri obluchenii intensivnymi elektronnymi i ionnymi puchkami [Modification of material properties and synthesis of thin films by irradiation with intense electron and ion beams]. Ust-Kamenogorsk, VKTU, 2000. 345 p.

Uglov V.V., Cherenda N.N., Anishchik V.M., Astashinskiy V.M., Kvasov N.T. Modifikatsiya materialov kompressionnymi plazmennymi potokami [Modification of materials by compressive plasma flows]. Minsk, BGU, 2013. 248 p.

Zhmakin A.I. Heat conduction beyond the Fourier law. Tech. Phys., 2021, vol. 66, pp. 1-22. https://doi.org/10.1134/S1063784221010242">https://doi.org/10.1134/S1063784221010242

Babenkov M.B., Ivanova E.A. Analysis of the wave propagation processes in heat transfer problems of the hyperbolic type. Continuum Mech. Thermodyn., 2014, vol. 26, pp. 483-502. https://doi.org/10.1007/s00161-013-0315-8">https://doi.org/10.1007/s00161-013-0315-8

Babenkov M.B. Propagation of harmonic perturbations in a thermoelastic medium with heat relaxation. J. Appl. Mech. Tech. Phy., 2013, vol. 54, pp. 277-286. https://doi.org/10.1134/S0021894413020132">https://doi.org/10.1134/S0021894413020132

Knyazeva A.G. Nonlinear diffusion models of deformed media. Fiz. mezomekh– Physical mesomechanics, 2011, vol. 14, no. 6, pp. 35-51.

Chepak-Gizbrekht M.V., Knyazeva A.G. Influence of thermal diffusion on the redistribution of elements and mechanical stresses during metal surface treatment with a particle beam. Izv. vuzov. Fizika – Russian Physics Journal, 2013, vol. 56, no. 12-2, pp. 39-45.

Knyazeva A.G., Han A. Intermetallic phases formation at the conditions of ion implantation. Izv. vuzov. Fizika – Russian Physics Journal, 2015, vol. 58, no. 6-2, pp. 126-130.

Davydov S.A., Zemskov A.V., Tarlakovskii D.V. Surface Green's function in non-stationary problems of thermomechanical diffusion. PPP – The Problems of Strength and Plasticity, 2017, vol.79, no. 1, pp. 38-47.

Vestyak A.V., Zemskov A.V., Tarlakovskii D.V. Two-dimensional unsteady problem of elasticity with diffusion for orthotropic one-component half-plane. PPP – The Problems of Strength and Plasticity, 2016. vol. 78, no. 1, pp. 13-21.

Parfenova E.S., Knyazeva A.G. Non-isothermal mechanodiffusion model of the initial stage of penetration of particle flow in a target surface. Vychisl. mekh. splosh. sred – Computational continuum mechanics, 2019. vol. 12, no. 1, pp. 36-47. https://doi.org/10.7242/1999-6691/2019.12.1.4">https://doi.org/10.7242/1999-6691/2019.12.1.4

Nowacki W. Dynamical problems of thermodiffusion in solids. Part I. Bull. Acad. Pol. Sci. Ser. Sci. Technol., 1974, vol. 22, pp. 55-64.

Nowacki W. Dynamical problems of thermodiffusion in solids. Part II. Bull. Acad. Pol. Sci. Ser. Sci. Technol., 1974, vol. 22, pp. 129-135.

Nowacki W. Dynamical problems of thermodiffusion in solids. Part III. Bull. Acad. Pol. Sci. Ser. Sci. Technol., 1974, vol. 22,  pp. 257-266.

Nowacki W. Dynamical problems of thermodiffusion in elastic solids. Proc. Vib. Probl., 1974. vol. 15, pp. 105-128.

Sherief H.H., Hamza F., Saleh H. The theory of generalized thermoelastic diffusion. Int. J. Eng. Sci., 2004, vol. 42, pp. 591‑608. https://doi.org/10.1016/j.ijengsci.2003.05.001">https://doi.org/10.1016/j.ijengsci.2003.05.001

Aouadi M. Generalized theory of thermoelastic diffusion for anisotropic media. J. Therm. Stresses, 2008, vol. 31, pp. 270‑285. https://doi.org/10.1080/01495730701876742">https://doi.org/10.1080/01495730701876742

Knyazeva A.G. Diffuziya i reologiya v lokal’no-ravnovesnoy termodinamike [Diffusion and rheology in locally-equilibrium thermodynamics]. Vestnik PGTU. Matematicheskoye modelirovaniye sistem i protsessov – PNRPU Mechanics Bulletin, 2005, no. 13, pp. 45-60.

Sedov L.I. Mekhanika sploshnoy sredy. T. 1 [Continuum mechanics. Vol. 1]Moscow, Nauka, 1970. 492 р.

Aouadi M. A theory of thermoelastic diffusion materials with voids. Z. Angew. Math. Phys., 2010, vol. 61, pp. 357-379. https://doi.org/10.1007/s00033-009-0016-0">https://doi.org/10.1007/s00033-009-0016-0

Aouadi M. Theory of generalized micropolar thermoelastic diffusion under Lord-Shulman model. J. Therm. Stresses, 2009, vol. 32, pp. 923-942. https://doi.org/10.1080/01495730903032276">https://doi.org/10.1080/01495730903032276

Elhagary M.A. Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times. Acta Mech., 2011, vol. 218, pp. 205-215. https://doi.org/10.1007/s00707-010-0415-5">https://doi.org/10.1007/s00707-010-0415-5

Nowacki W. Dynamiczne zagadnienia termosprężystości [Dynamical problems of thermoelasticity]. Warzawa, 1966. 366 р.

Podstrigach Ya.S., Kolyano Yu.M. Obobshchennaya termomekhanika [Generalized Thermomechanics]. Kiev, Naukova dumka, 1976. 311 p.

Il'ina E.S., Demidov V.N., Knyazeva A.G. The modeling features of diffusion processes in elastic body under particles surface treatment. Vestnik PNIPU. Mekhanika – PNRPU Mechanics Bulletin, 2012, no. 3, pp. 25-49.

Grigor’yev A.S., Meylikhov K.Z. (ed.) Fizicheskiye velichiny: Spravochnik [Physical quantities: Handbook]. Moscow, Energoatomizdat, 1991. 1232 p.

Published

2021-03-30

Issue

Section

Articles

How to Cite

Parfenova, E. S., & Knyazeva, A. G. (2021). The influence of chemical reaction parameters on the interaction of thermal, diffusion and mechanical waves under surface treatment by a particle beam. Computational Continuum Mechanics, 14(1), 77-90. https://doi.org/10.7242/1999-6691/2021.14.1.7