Modeling of the crystallization process of a polymer plate taking into account large deformations

Authors

  • Roman Georgiyevich Kulikov Perm National Research Polytechnic University
  • Tat’yana Georgiyevna Kulikova Perm National Research Polytechnic University
  • Oleg Yur’yevich Smetannikov Perm National Research Polytechnic University

DOI:

https://doi.org/10.7242/1999-6691/2021.14.1.5

Keywords:

thermomechanics, polymers, crystallization, mathematic simulation, finite deformations, linearization, numerical approach

Abstract

The issues of modeling the thermomechanical behavior of a polymer material during cooling accompanied by crystallization are considered. The proposed approach is applied to the problem of deformation upon cooling of an infinite plate made of low-pressure polyethylene during crystallization. Mathematical formulations of thermal kinetic and thermomechanical boundary value problems are presented. The results of the numerical solution of a coupled heat-kinetic problem, including the non-stationary heat conduction equation and the crystallization kinetics equation obtained under the assumption that the characteristics of the material depend on temperature are given. When solving the boundary value problem of thermomechanics, the previously obtained phenomenological nonlinear constitutive relations are used, which continuously describe the behavior of a polymer material in a wide temperature range, including the range of phase transformations. The construction of constitutive relations was carried out using the Peng-Landel potential. A weak variational formulation of the boundary value problem, constructed using the Galerkin method, is presented. A linearization procedure is carried out, which makes it possible to reduce the solution of an initially nonlinear boundary value problem to solving a sequence of linear problems with relatively small increments of the displacement vector components. In this case, the linearization of geometric relations is performed by superimposing small increments of deformations on finite ones, linearization of the constitutive relations - expansion in a Taylor series with subsequent retention of linear terms under the assumption that the increment of the components of the strain tensor is small. An approach is demonstrated that naturally takes into account the small increments of temperature and structural deformations arising in the material. Some aspects of the numerical implementation of the created algorithm based on the finite element technology of constructing a discrete analogue of the problem under consideration are analyzed. The results of solving the problem under discussion in a linear formulation under the assumption of small deformations and in a nonlinear formulation are compared.

Downloads

Download data is not yet available.

References

Korotkov V.N., Turusov R.A., Dzhavadyan E.A., Rozenberg B.A. Production stresses during the solidification of cylindrical articles formed from polymer composite materials. Mech. Compos. Mater., 1986, vol. 22, pp. 99-103. https://doi.org/10.1007/BF00606015">https://doi.org/10.1007/BF00606015

Shaffer B.W., Lewitsky M. Thermoelastic constitutive equation for chemically hardering materials. J. Appl. Mech., 1974, vol. 41, pp. 652-657. https://doi.org/10.1115/1.3423365">https://doi.org/10.1115/1.3423365

Lewitsky M., Shaffer B.W. Residual thermal stresses in a solid sphere cast from a thermosetting material. J. Appl. Mech., 1975, vol. 42, pp. 651-655. https://doi.org/10.1115/1.3423658">https://doi.org/10.1115/1.3423658

Golotina L.A., Matveenko V.P., Shardakov I.N. Analysis of deformation process characteristics in amorphous-crystalline polymers. Mech. Solids, 2012, vol. 47, pp. 634-640. https://doi.org/10.3103/S0025654412060040">https://doi.org/10.3103/S0025654412060040

Boyce M.C., Socrate S., Llana P.G. Constitutive model for the finite deformation stress-strain behavior of poly(ethylene terephthalate) above the glass transition. Polymer, 2000, vol. 41, pp. 2183-2201. https://doi.org/10.1016/S0032-3861(99)00406-1">https://doi.org/10.1016/S0032-3861(99)00406-1

Dupaix R.B., Boyce M.C. Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition. Mech. Mater., 2007, vol. 39, pp. 39-52. https://doi.org/10.1016/j.mechmat.2006.02.006">https://doi.org/10.1016/j.mechmat.2006.02.006

Richeton J., Ahzi S., Vecchio K.S., Jiang F.C., Makradi A. Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain-rates. Int. J. Solid. Struct., 2007, vol. 44, pp. 7938-7954. https://doi.org/10.1016/j.ijsolstr.2007.05.018">https://doi.org/10.1016/j.ijsolstr.2007.05.018

Anand L., Ames N.M., Srivastava V., Chester S.A. A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: Formulation. Int. J. Plast., 2009, vol. 25, pp. 1474-1494. https://doi.org/10.1016/j.ijplas.2008.11.004">https://doi.org/10.1016/j.ijplas.2008.11.004

Srivastava V., Chester S.A., Ames N.M., Anand L. A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition. Int. J. Plast., 2010, vol. 26, pp. 1138-1182. https://doi.org/10.1016/j.ijplas.2010.01.004">https://doi.org/10.1016/j.ijplas.2010.01.004

Tikhomirova K.A., Trufanov N.A., Shardakov I.N. Numerical and experimental study of thermomechanical behavior of glassy polymers in the case of large deformations. Vychisl. mekh. splosh. sred – Computational Continuum Mechanics, 2013, vol. 6, no 4, pp. 475-482. https://doi.org/10.7242/1999-6691/2013.6.4.52">https://doi.org/10.7242/1999-6691/2013.6.4.52

Rogovoi A.A., Stolbova O.S. Final deformations in alloys and polymers with memory of the shape. Uchenyye zapiski KnAGTU – Scholarly Notes of Komsomolsk-na-Amure State Technical University, 2018, vol. 1, no. 3(35), pp. 6-17.

Rogovoi A.A., Stolbova O.S. Modeling thermomechanical processes in shape memory polymers under finite deformations. J. Appl. Mech. Tech. Phy., 2015, vol. 56, pp. 1059-1070. https://doi.org/10.1134/S0021894415060164">https://doi.org/10.1134/S0021894415060164

Varghese A.G., Batra R.C. Constitutive equations for thermomechanical deformations of glassy polymers. Int. J. Solid. Struct., 2009, vol. 46, pp. 4079-4094. https://doi.org/10.1016/j.ijsolstr.2009.08.006">https://doi.org/10.1016/j.ijsolstr.2009.08.006

Matveenko V.P., Smetannikov O.Yu., Trufanov N.A., Shardakov I.N. Termomekhanika polimernykh materialov v usloviyakh relaksatsionnogo perekhoda [Thermomechanics of polymer materials in a relaxation transition]. Moscow, Fizmatlit, 2009. 176 p.

Qi H.J., Nguyen T.D., Castroa F., Yakacki C.M., Shandas R. Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers. J. Mech. Phys. Solid., 2008, vol. 56, pp. 1730-1751. https://doi.org/10.1016/j.jmps.2007.12.002">https://doi.org/10.1016/j.jmps.2007.12.002

Liu C., Qin H., Mather P.T. Review of progress in shape-memory polymers. J. Mater. Chem., 2007, vol. 17, pp. 1543-1558. https://doi.org/10.1039/b615954k">https://doi.org/10.1039/b615954k

Liu Y., Gall K., Dunn M.L., Greenberg A.R., Diani J. Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling. Int. J. Plast., 2006, vol. 22, pp. 279-313. https://doi.org/10.1016/j.ijplas.2005.03.004">https://doi.org/10.1016/j.ijplas.2005.03.004

Dietsch B., Tong T. A review: Features and benefits of shape memory polymers (SMPs). J. Adv. Mater., 2007, vol. 39, no. 2, pp. 3-12.

Gunes I.S., Jana S.C. Shape memory polymers and their nanocomposites: a review of science and technology of new multifunctional materials. J. Nanosci. Nanotechnol., 2008, vol. 8, pp. 1616-1637.

Tikhomirova K.A., Trufanov N.A. Experimental calibration of constitutive model for an amorphous shape memory polymer under large deformations. Vestnik PNIPU. Mekhanika – PNRPU Mechanics Bulletin, 2015, no. 2, pp. 151-163. https://doi.org/10.15593/perm.mech/2015.2.10">https://doi.org/10.15593/perm.mech/2015.2.10

Kulikova T.G. To the description of crystallizing polymer material's deformation with regard to large deformations. Vestnik PGTU. Mekhanika – Bulletin of Perm State Technical University. Mechanics, 2010, no. 3, pp. 55-71.

Shardakov I.N., Matveyenko V.P., Pistsov N.V., Beghishev V.P. Simulation of thermomechanical processes in crystallising polymer. Polymer Eng. Sci., 1997, vol. 37, pp. 1270-1279. https://doi.org/10.1002/pen.11772">https://doi.org/10.1002/pen.11772

Malkin A.Ya., Bolgov S.A., Begishev V.P., Mazalov O.S. Degree of crystalline structure of polymer obtained from melt at various cooling rates. Journal of Engineering Physics, 1991, vol. 61, pp. 1092-1095. https://doi.org/10.1007/BF00872884">https://doi.org/10.1007/BF00872884

Lipatov Yu.S. (ed.) Teplofizicheskiye i reologicheskiye kharakteristiki polimerov: Spravochnik [Thermophysical and rheological characteristics of polymers: Handbook]. Kiev, Naukova dumka, 1977. 244 p.

Piven' A.N., Grechanaya N.A., Chernobyl’skiy N.I. Teplofizicheskiye svoystva polimernykh materialov [Thermophysical properties of polymeric materials]. Kiev, Vishcha shkola, 1976. 180 p.

Nielsen L.E. Mechanical properties of polymers and composites. New York, Marcel Dekker, INC., 1974. 274 p.

Tsvetkov F.F., Grigor’yev B.A. Teplomassoobmen [Heat and mass transfer]. Moscow, Izdatel’stvo MEI, 2005. 550 p.

Bakhvalov N.S., Zhidkov N.P., Kobel'kov G.M. Chislennyye metody [Numerical methods]. Moscow, Laboratoriya Bazovykh Znaniy, 2001. 630 p.

Kulikov R.G., Kulikova T.G., Smetannikov O.Yu. Numerical study of a thermomechanical behavior of a crystallizing polymer medium with regard to finite deformations. Vestnik PNIPU. Mekhanika – PNRPU Mechanics Bulletin, 2018, no. 1, pp. 18-28. https://doi.org/10.15593/perm.mech/2018.1.02">https://doi.org/10.15593/perm.mech/2018.1.02

Adamov A.A., Matveyenko V.P., Trufanov N.A., Shardakov I.N. Metody prikladnoy vyazkouprugosti [Applied viscoelasticity methods]. Ekaterinburg, ICMM UB RAS, 2003. 411 p.

Rogovoy A.A. Formalized approach to construction of the state equations for complex media under finite deformations. Continuum Mech. Thermodyn., 2012, vol. 24, pp. 81-114. http://dx.doi.org/10.1007/s00161-011-0220-y">http://dx.doi.org/10.1007/s00161-011-0220-y

Rogovoi A.A. Constitutive relations for finite elastic-inelastic strains. J. Appl. Mech. Tech. Phys., 2005, vol. 46, pp. 730-739. https://doi.org/10.1007/s10808-005-0130-5">https://doi.org/10.1007/s10808-005-0130-5

Zienkiewicz O.C., Taylor R.L. The finite element method. Vol. 1. The basis. Butterworth-Heinemann, 2000. 708 p.

Malkin A.Ya., Begishev V.P. Khimicheskoye formovaniye polimerov [Chemical molding of polymers]. Moscow, Khimiya, 1991. 240 р.

Published

2021-03-30

Issue

Section

Articles

How to Cite

Kulikov, R. G., Kulikova, T. G., & Smetannikov, O. Y. (2021). Modeling of the crystallization process of a polymer plate taking into account large deformations. Computational Continuum Mechanics, 14(1), 51-60. https://doi.org/10.7242/1999-6691/2021.14.1.5